Skip to main content

Advertisement

Log in

Fabrication of GO-TiO2/(Ca,Y)F2:Tm,Yb composites with high-efficiency optical driving photocatalytic activity for degradation of organic dyes and bacteriostasis

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Development of photocatalytic materials able to profit from the whole spectrum of sun for efficient organic pollution removal and bacterial elimination is a fascinating strategy in environmental engineering. In current work, GO-TiO2/(Ca,Y)F2:Tm,Yb, a full-spectrum composite photocatalyst, was prepared via hydrothermal processing with TiO2/(Ca,Y)F2:Tm,Yb particles deposited on the surface of graphene oxide (GO). The surface properties of GO-TiO2/(Ca,Y)F2:Tm,Yb were characterized using various characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) surface area analyzer. Besides, ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy, electron spin resonance (ESR) and other methods were used to systematically explore the photocatalytic mechanism of GO enhancement of TiO2/(Ca,Y)F2:Tm,Yb. In photocatalytic degradation study, the degradation rate of methyl orange (MO) was improved by 40% when GO was added into the TiO2/(Ca,Y)F2:Tm,Yb system. In addition, the presence of GO also improves the antibacterial ability of TiO2/(Ca,Y)F2:Tm,Yb against Escherichia coli and Staphylococcus aureus. All results reveal high efficacy of GO-TiO2/(Ca,Y)F2:Tm,Yb under full spectrum light irradiation, in which (Ca,Y)F2:Tm,Yb and TiO2 can improve its utilization of full spectrum sunlight, and GO can enhance adsorption ability of dye and electron–hole pair differentiation ability of TiO2/(Ca,Y)F2:Tm,Yb.

Graphic abstract

摘要

在环境工程中, 开发能够利用全光谱的光催化材料实现有机污染物和细菌的高效去除具有重要意义。本论文采用水热法在氧化石墨烯 (GO) 表面沉积TiO2 /(Ca,Y)F2:Tm,Yb粒子, 制备了一种全光谱复合光催化剂GO-TiO2/(Ca,Y)F2:Tm,Yb。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱仪(XPS)和BET表面积分析仪对GO-TiO2/(Ca,Y)F2:Tm,Yb的表面特性进行了表征。此外, 利用紫外-可见漫反射光谱、电子自旋共振(ESR)等方法系统探讨了GO对TiO2/(Ca,Y)F2:Tm,Yb的光催化增强机理。在光催化降解研究中, GO与TiO2/(Ca,Y)F2:Tm, Yb的复合使甲基橙 (MO) 的降解率提高了40%。此外, GO的存在也提高了TiO2/(Ca,Y)F2:Tm, Yb对大肠杆菌和金黄色葡萄球菌的抗菌能力。所有结果显示GO-TiO2 / (Ca, Y) F2: Tm, Yb材料在全光谱光线照射下具有高效率, 其中(Ca, Y) F2: Tm, Yb, TiO2可以提高材料对全光谱阳光的利用率, 而GO能增强TiO2/(Ca,Y)F2:Tm,Yb对染料的吸附能力和电子空穴对的分化能力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kumar SG, Devi LG. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A. 2011;115(46):13211.

    Article  CAS  Google Scholar 

  2. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys. 2005;44(12R):8269.

    Article  CAS  Google Scholar 

  3. Pipi A, Byzynski G, Ruotolo L. Photocatalytic activity and RNO dye degradation of nitrogen-doped TiO2 prepared by ionothermal synthesis. Mater Res. 2017;20(3):628.

    Article  CAS  Google Scholar 

  4. Katoueizadeh E, Zebarjad SM, Janghorban K. Optimization of synthesis conditions of N-doped TiO2 nanoparticles using Taguchi robust design. Mater Chem Phys. 2017;201:69.

    Article  CAS  Google Scholar 

  5. Arabzadeh A, Salimi A. One dimensional CdS nanowire@ TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation. J Colloid Interf Sci. 2016;479:43.

    Article  CAS  Google Scholar 

  6. Lin ZJ, Wu SL, Liu XY, Qian S, Chu PK, Zheng YF, Cheung KM, Zhao Y, Yeung KW. A surface-engineered multifunctional TiO2 based nano-layer simultaneously elevates the corrosion resistance, osteoconductivity and antimicrobial property of a magnesium alloy. Acta Biomater. 2019;99:495.

    Article  CAS  Google Scholar 

  7. Ren YW, Han YJ, Li ZY, Liu XM, Zhu SL, Liang YQ, Yeung KWK, Wu SL. Ce and Er co-doped TiO2 for rapid bacteria-killing using visible light. Bioact Mater. 2020;5(2):201.

    Article  Google Scholar 

  8. Wang R, Tang T, Wei YC, Dang D, Huang KB, Chen XW, Yin H, Tao XQ, Lin Z, Lu GN. Photocatalytic debromination of polybrominated diphenyl ethers (PBDEs) on metal doped TiO2 nanocomposites: mechanisms and pathways. Environ Int. 2019;127:5.

    Article  CAS  Google Scholar 

  9. Guo F, Jia J, Dai D, Gao HT. The electronic properties and enhanced photocatalytic mechanism of TiO2 hybridized with MoS2 sheet. Phys E. 2018;97:31.

    Article  CAS  Google Scholar 

  10. Mortazavi-Derazkola S, Salavati-Niasari M, Amiri O, Abbasi A. Fabrication and characterization of Fe3O4@ SiO2@ TiO2@ Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J Energ Chem. 2017;26(1):17.

    Article  Google Scholar 

  11. Kavitha S, Jayamani N, Barathi D. Investigation on SnO2/TiO2 nanocomposites and their enhanced photocatalytic properties for the degradation of methylene blue under solar light irradiation. Bull Mater Sci. 2021;44(1):1.

    Article  Google Scholar 

  12. Ton NQT, Le TNT, Kim S, Dao VA, Yi J, Vu THT. High-efficiency photo-generated charges of ZnO/TiO2 heterojunction thin films for photocatalytic and antibacterial performance. J Nanosci Nanotechnol. 2020;20(4):2214.

    Article  CAS  Google Scholar 

  13. Anku W, Oppong SOB, Shukla SK, Govender PP. Comparative photocatalytic degradation of monoazo and diazo dyes under simulated visible light using Fe3+/C/S doped-TiO2 nanoparticles. Acta Chim Slov. 2016;63(2): 380.

  14. Laishram D, Shejale KP, Gupta R, Sharma RK. Heterostructured HfO2/TiO2 spherical nanoparticles for visible photocatalytic water remediation. Mater Lett. 2018;231:225.

    Article  CAS  Google Scholar 

  15. Kaviyarasu K, Geetha N, Kanimozhi K, Magdalane CM, Sivaranjani S, Ayeshamariam A, Kenned J, Maaza M. In vitro cytotoxicity effect and antibacterial performance of human lung epithelial cells A549 activity of zinc oxide doped TiO2 nanocrystals: investigation of bio-medical application by chemical method. Mater Sci Eng C. 2017;74:325.

    Article  CAS  Google Scholar 

  16. Zheng CH, Teng CP, Yang DP, Lin M, Win KY, Li ZB, Ye EY. Fabrication of luminescent TiO2:Eu3+ and ZrO2:Tb3+ encapsulated PLGA microparticles for bioimaging application with enhanced biocompatibility. Mater Sci Eng C. 2018;92:1117.

    Article  CAS  Google Scholar 

  17. Chen Y, Li S, Zhao RY, Li W, Ren ZH, Han GR. Single-crystal TiO2/SrTiO3 core-shell heterostructured nanowire arrays for enhanced photoelectrochemical performance. Rare Met. 2019;38(5):369.

    Article  CAS  Google Scholar 

  18. Shi ZZ, Gao XX, Zhang HJ, Liu XF, Li HY, Zhou C, Yin YX, Wang LN. Design biodegradable Zn alloys: second phases and their significant influences on alloy properties. Bioact Mater. 2020;5(2):210.

    Article  Google Scholar 

  19. Han DL, Li Y, Liu XM, Yeung KWK, Zheng YF, Cui ZD, Liang YQ, Li ZY, Zhou SL, Wang XB, Wu SL. Photothermy-strengthened photocatalytic activity of polydopamine-modified metal-organic frameworks for rapid therapy of bacteria-infected wounds. J Mater Sci Technol. 2021;62:83.

    Article  Google Scholar 

  20. Kong XY, Liu XM, Zheng YF, Chu PK, Zhang Y, Wu SL. Graphitic carbon nitride-based materials for photocatalytic antibacterial application. Mater Sci Eng. 2021;145:100610.

    Article  Google Scholar 

  21. Zhu M, Liu XM, Tan L, Cui ZD, Liang YQ, Li ZY, Yeung KWK, Wu SL. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. J Hazard Mater. 2020;383:121122.

    Article  CAS  Google Scholar 

  22. Teng XF, Liu XM, Cui ZD, Zheng YF, Chen DF, Li ZY, Liang YQ, Zhou SL, Wu SL. Rapid and highly effective bacteria-killing by polydopamine/IR780@ MnO2-Ti using near-infrared light. Prog Nat Sci: Mater Int. 2020;30(5):677.

    Article  CAS  Google Scholar 

  23. Han DL, Han YJ, Li J, Liu XM, Yeung KWK, Zheng YF, Cui ZD, Yang XJ, Liang YQ, Li ZY, Zhou SL, Yuan XB, Feng XB, Yang C, Wu SL. Enhanced photocatalytic activity and photothermal effects of Cu-doped metal-organic frameworks for rapid treatment of bacteria-infected wounds. Appl Catal B-Environ. 2020;261:118248.

    Article  CAS  Google Scholar 

  24. Xu YD, Liu XM, Zheng YF, Li CY, Yeung KWK, Cui ZD, Liang YQ, Zhu SL, Wu SL. Ag3PO4 decorated black urchin-like defective TiO2 for rapid and long-term bacteria-killing under visible light. Bioact Mater. 2021;6(6):1575.

    Article  CAS  Google Scholar 

  25. Su K, Tan L, Liu XM, Cui ZD, Zheng YF, Li B, Han Y, Li ZY, Zhu SL, Liang YQ, Feng XB, Wang XB, Wu SL. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano. 2020;14(2):2077.

    Article  CAS  Google Scholar 

  26. Xue H, Chen YL, Liu XP, Qian QR, Luo YJ, Cui ML, Chen YS, Yang DP, Chen QH. Visible light-assisted efficient degradation of dye pollutants with biomass-supported TiO2 hybrids. Mater Sci Eng C. 2018;82:197.

    Article  CAS  Google Scholar 

  27. Liang Y, Wang H, Casalongue HS, Chen Z, Dai HJ. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010;3(10):701.

    Article  CAS  Google Scholar 

  28. Chang SC, Zhang Q, Lu YK, Wu SZ, Wang W. High-efficiency and selective adsorption of organic pollutants by magnetic CoFe2O4/graphene oxide adsorbents: experimental and molecular dynamics simulation study. Sep Purif Technol. 2020;238:116400.

    Article  CAS  Google Scholar 

  29. Liu JC, Bai HW, Wang YJ, Liu ZY, Zhang XW, Sun DD. Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater. 2010;20(23):4175.

    Article  CAS  Google Scholar 

  30. Wang WJ, Li YC, Kang ZW, Wang F, Yu JC. A NIR-driven photocatalyst based on α-NaYF4: Yb, Tm@ TiO2 core–shell structure supported on reduced graphene oxide. Appl catal B-Environ. 2016;182:184.

    Article  CAS  Google Scholar 

  31. Mi C, Tian ZH, Cao C, Wang ZJ, Mao CB, Xu SK. Novel microwave-assisted solvothermal synthesis of NaYF4: Yb, Er upconversion nanoparticles and their application in cancer cell imaging. Langmuir. 2011;27(23):14632.

    Article  CAS  Google Scholar 

  32. Kumar A, Reddy KL, Kumar S, Kumar A, Sharma V, Krishnan V. Rational design and development of lanthanide-doped NaYF4@ CdS–Au–RGO as quaternary plasmonic photocatalysts for harnessing visible–near-infrared broadband spectrum. ACS Appl Mater Interfaces. 2018;10(18):15565.

    Article  CAS  Google Scholar 

  33. Rong XS, Qiu FS, Zhang C, Fu L, Wang YY, Yang DY. Preparation, characterization and photocatalytic application of TiO2-graphene photocatalyst under visible light irradiation. Ceram Int. 2015;41(2):2502.

    Article  CAS  Google Scholar 

  34. Li D, Xu H. Rapid preparation of porous graphene microspheres supported TiO2 for dye waste decoloration. Acta Microsc. 2020;29(1):55.

    CAS  Google Scholar 

  35. Ding J, Li BJ, Liu YS, Yan XS, Zeng S, Zhang XD, Hou LF, Cai Q, Zhang JM. Fabrication of Fe3O4@ reduced graphene oxide composite via novel colloid electrostatic self-assembly process for removal of contaminants from water. J Mater Chem A. 2015;3(2):832.

    Article  CAS  Google Scholar 

  36. Zhang Y, Yuan SS, Zhao YH, Wang HG, He CD. Synthesis of novel yttrium-doped graphene oxide nanocomposite for dye removal. J Mater Chem A. 2014;2(21):7897.

    Article  CAS  Google Scholar 

  37. Zhang JJ, Qi P, Li J, Zheng XC, Liu P, Guan XX, Zheng GP. Three-dimensional Fe2O3–TiO2–graphene aerogel nanocomposites with enhanced adsorption and visible light-driven photocatalytic performance in the removal of RhB dyes. J Ind Eng Chem. 2018;61:407.

    Article  CAS  Google Scholar 

  38. Kumar S, Sharma V, Bhattacharyya K, Krishnan V. Synergetic effect of MoS2–RGO doping to enhance the photocatalytic performance of ZnO nanoparticles. New J Chem. 2016;40(6):5185.

    Article  CAS  Google Scholar 

  39. Zhang Y, Tang ZR, Fu XZ, Xu YJ. TiO2-graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: is TiO2-graphene truly different from other TiO2−carbon composite materials? ACS Nano. 2010;4(12):7303.

    Article  CAS  Google Scholar 

  40. Zhang N, Zhang YH, Pan XY, Yang MQ, Xu YJ. Constructing ternary CdS–graphene–TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J Phys Chem C. 2012;116(34):18023.

    Article  CAS  Google Scholar 

  41. Wang WJ, Zhang LZ, An TC, Li GY, Yip HY, Wong PK. Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species. Appl Catal B-Environ. 2011;108:108.

    Article  Google Scholar 

  42. Li Q, Guo BD, Yu JG, Ran JR, Zhang BH, Yan HJ, Gong JR. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc. 2011;133(28):10878.

    Article  CAS  Google Scholar 

  43. An XQ, Jimmy CY, Wang F, Li CH, Li YC. One-pot synthesis of In2S3 nanosheets /graphene composites with enhanced visible-light photocatalytic activity. Appl Catal B-Environ. 2013;129:80.

    Article  CAS  Google Scholar 

  44. Wang WJ, Chen XQ, Liu G, Shen ZR, Xia DH, Wong PK, Jimmy CY. Monoclinic dibismuth tetraoxide: a new visible-light-driven photocatalyst for environmental remediation. Appl Catal B-Environ. 2015;176:444.

    Article  Google Scholar 

  45. Hassani A, Çelikdag G, Eghbali P, Sevim M, Karaca S, Metin O. Heterogeneous sono-Fenton-like process using magnetic cobalt ferrite-reduced graphene oxide (CoFe2O4-rGO) nanocomposite for the removal of organic dyes from aqueous solution. Ultrason Sonochem. 2018;40:841.

    Article  CAS  Google Scholar 

  46. Yang CL, Liu J, Ren QH, Liu Y, Zhou P, Li H. Development of novel thermal sprayed hydroxyapatite-rare earth (HA-Re) coatings for potential antimicrobial applications in orthopedics. J Therm Spray Technol. 2021;30:886.

    Article  CAS  Google Scholar 

  47. Liu P, Liu Y, Lu ZX, Zhu JC, Dong JX, Pang DW, Shen P, Qu SS. Study on biological effect of La3+ on Escherichia coli by atomic force microscopy. J Inorg Biochem. 2004;98(1):68.

    Article  CAS  Google Scholar 

  48. Yang WD, Wang T, Lei HY, Liu JS. Progress in studies on biological effect of rare earth. Chin Rare Earth. 2000;21(3):62.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFC1107403), the National Natural Science Foundation of China (No. 51771069) and the Natural Science Foundation of Hebei Province of China (No. E2020202028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yan Zhao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Li, J., Zou, XR. et al. Fabrication of GO-TiO2/(Ca,Y)F2:Tm,Yb composites with high-efficiency optical driving photocatalytic activity for degradation of organic dyes and bacteriostasis. Rare Met. 41, 650–662 (2022). https://doi.org/10.1007/s12598-021-01831-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01831-z

Keywords

Navigation