Skip to main content

Advertisement

Log in

Development of Novel Thermal Sprayed Hydroxyapatite-Rare Earth (HA-Re) Coatings for Potential Antimicrobial Applications in Orthopedics

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Biofilm-associated infections and the lack of successful tissue integration of biomaterial surfaces are the two main barriers to the long-term service of implanted biomaterials. Development of novel biocompatible antimicrobial materials has provided insights into their potential biomedical applications. Many clinical studies have successfully proved that hydroxyapatite coating has excellent osteogenic activity but lacks antibacterial infection in the early stages after implantation. Rare earth (Re) elements have become promising antibacterial biocides and bone-forming effects. Antibacterial capacity of 14 rare earth elements (Eu, Gd, Ce, Nd, Y, La, Pr, Er, Sm, Ho, Tb, Yb, Lu, Dy) was assayed. The gadolinium (Gd) showed outstanding broad-spectrum antibacterial activity against both Gram-positive and Gram-positive bacteria. Here, we report Gd-HA coatings deposited on titanium (Ti) substrate by liquid thermal spraying. The grain size of Gd-HA decreased slightly after Gd3+ incorporation. The antibacterial properties of Gd-HA composite coatings were determined against Gram-negative pathogens Escherichia coli and Gram-positive pathogens Staphylococcus epidermidis. The anti-infection performances were assessed by examining bacteria adhesion and biofilm formation on the coatings. The in vitro cytotoxicity of the Gd-doped HA coatings was further measured on human osteoblast cell line by CCK-8 method. The thermal sprayed HA-Re composite coatings show improved antimicrobial and biocompatible properties and great applicable potential in orthopedics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Niinomi, Y. Liu, M. Nakai, H.H. Liu, and H. Li, Biomedical Titanium Alloys with Young’s Moduli Close to that of Cortical Bone, Regen. Biomater., 2016, 3, p 173-185

    CAS  Google Scholar 

  2. K. Marycz, A. Smieszek, S. Targonska, S.A. Walsh, K. Szustakiewicz, and R.J. Wiglusz, Three Dimensional (3D) Printed Polylactic Acid with Nano-hydroxyapatite Doped with Europium(III) Ions (nHAp/PLLA@Eu(3+)) Composite for Osteochondral Defect Regeneration and Theranostics, Mater. Sci. Eng. Mater., 2020, 110, p 110634. https://doi.org/10.1016/j.msec.2020.110634

    Article  CAS  Google Scholar 

  3. Y.K. Kim, S.G. Kim, J.H. Byeon, H.J. Lee, I.U. Um, S.C. Lim, and S.Y. Kim, Development of a Novel Bone Grafting Material Using Autogenous Teeth, J. Oral Maxil Surg., 2010, 109(4), p 496-504

    Google Scholar 

  4. L. Sun, C.C. Berndt, K.A. Gross, and A. Kucuk, Material Fundamentals and Clinical Performance of Plasma-Sprayed Hydroxyapatite Coatings: A Review, J. Biomed. Mater. Res., 2001, 10(58), p 570-593

    Google Scholar 

  5. C.L. Popa, A. Groza, P. Chapon, C.S. Ciobanu, R.V. Ghita, R. Trusca, M. Ganciu, and D. Predoi, Physicochemical Analysis of the Polydimethylsiloxane Interlayer Influence on a Hydroxyapatite Doped with Silver Coating, J. Nanomaters, 2015, 2015, p 1-10

    CAS  Google Scholar 

  6. K. Ohta, M. Kikuchi, J. Tanaka, and H. Eda, Synthesis of c Axes Oriented Hydroxyapatite Aggregate, Chem. Lett., 2002, 2(4), p 36-38

    Google Scholar 

  7. Y. Liu, W. Hou, R. Lupoi, S. Yin, J. Huang, and H. Li, Microscopic Visualization of Cell – Cold Sprayed Bio-coating Interfaces: An Intermediate Layer Formed During the Culturing Mediates the Behaviors of the Cells, Appl. Surf. Sci., 2020, 529, p 1-9

    Google Scholar 

  8. P. Baskaran, A. Udduttula, and V. Uthirapathy, Development and Characterisation of Novel Ce-Doped Hydroxyapatite-Fe3O4 Nanocomposites and Their In Vitro Biological Evaluations for Biomedical Applications, IET Nanobiotechnol., 2018, 12(2), p 138-146

    Google Scholar 

  9. H. Hu, K. Johani, A. Almatroudi, K. Vickery, B. Van Natta, M.E. Kadin, G. Brody, M. Clemens, C.Y. Cheah, S. Lade, P.A. Joshi, H.M. Prince, and A.K. Deva, Bacterial Biofilm Infection Detected in Breast Implant-Associated Anaplastic Large-Cell Lymphoma, Plast. Reconstr. Surg., 2016, 137(6), p 1659-1669

    CAS  Google Scholar 

  10. K. Szyszka, J. Rewak-Soroczynska, A. Dorotkiewicz-Jach, K.A. Ledwa, A. Piecuch, M. Giersig, Z. Drulis-Kawa, and R.J. Wiglusz, Structural Modification of Nanohydroxyapatite Ca10(PO4)6(OH)2 Related to Eu(3+) and Sr(2+) Ions Doping and Its Spectroscopic and Antimicrobial Properties, J. Inorg. Biochem., 2020, 203, p 110884

    CAS  Google Scholar 

  11. A. Fihri, C. Len, R.S. Varma, and A. Solhy, Hydroxyapatite: A Review of Syntheses, Structure and Applications in Heterogeneous Catalysis, Coord. Chem. Rev., 2017, 347, p 48-76

    CAS  Google Scholar 

  12. M. Yetmez, Z.E. Erkmen, C. Kalkandelen, A. Ficai, and F.N. Oktar, Sintering Effects of Mullite-Doping on Mechanical Properties of Bovine Hydroxyapatite, Mate. Sci. Eng., 2017, 77, p 470-475

    CAS  Google Scholar 

  13. Y. Li, C.P. Ooi, C.H. Ning, and K. Aik-Khor, Synthesis and Characterization of Neodymium(III) and Gadolinium(III)-Substituted Hydroxyapatite as Biomaterials, Int. J. Appl. Cera, 2009, 6(4), p 501-512

    CAS  Google Scholar 

  14. Ž. Radovanović, B. Jokić, D. Veljović, S. Dimitrijević, V. Kojić, R. Petrović, and D. Janaćković, Antimicrobial Activity and Biocompatibility of Ag+ and Cu2+ Doped Biphasic Hydroxyapatite/α-Tricalcium Phosphate Obtained from Hydrothermally Synthesized Ag+ and Cu2+ Doped Hydroxyapatite, Appl. Surf. Sci., 2014, 307, p 513-519

    Google Scholar 

  15. S. Eto, H. Miyamoto, T. Shobuike, I. Noda, T. Akiyama, M. Tsukamoto, M. Ueno, S. Someya, S. Kawano, M. Sonohata, and M. Mawatari, Silver Oxide-Containing Hydroxyapatite Coating Supports Osteoblast Function and Enhances Implant Anchorage Strength in Rat Femur, J. Orthop. Res., 2015, 33(9), p 1391-1397

    CAS  Google Scholar 

  16. T. Wakabayashi, A. Ymamoto, A. Kazaana, Y. Nakano, Y. Nojiri, and M. Kashiwazaki, Antibacterial, Antifungal and Nematicidal Activities of Rare Earth Ions, Biol. Trace Elem. Res., 2016, 174(2), p 464-470

    CAS  Google Scholar 

  17. A. Jordens, Y.P. Cheng, and K.E. Waters, A Review of the Beneficiation of Rare Earth Element Bearing Minerals, Miner. Eng., 2013, 41, p 97-114

    CAS  Google Scholar 

  18. S. Zaichick, V. Zaichick, V. Karandashev, and S. Nosenko, Accumulation of Rare Earth Elements in Human Bone within the Lifespan, Metallomics, 2011, 3(2), p 186-194

    CAS  Google Scholar 

  19. G. Pagano, M. Guida, F. Tommasi, and R. Oral, Health Effects and Toxicity Mechanisms of Rare Earth Elements-Knowledge Gaps and Research Prospects, Ecotoxicol. Environ. Saf., 2015, 115, p 40-48

    CAS  Google Scholar 

  20. K. Saranya, S. Bhuvaneswari, S. Chatterjee, and N. Rajendran, Biocompatible Gadolinium-Coated Magnesium Alloy for Biomedical Applications, J. Mater. Sci., 2020, 55(25), p 11582-11596

    CAS  Google Scholar 

  21. Y. Lin, Z. Yang, and J. Cheng, Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles, J. Rare Earth, 2007, 25(4), p 452-456

    Google Scholar 

  22. K.H. Thompson and C. Orvig, Editorial: Lanthanide Compounds for Therapeutic and Diagnostic Applications, Chem. Soc. Rev., 2006, 35(6), p 499-505

    CAS  Google Scholar 

  23. M.E. Bartolini, J. Pekar, D.R. Chettle, F. McNeill, A. Scott, J. Sykes, F.S. Prato, and G.R. Moran, An Investigation of the Toxicity of Gadolinium Based MRI, Contrast Agents Using Neutron Activation Analysis, Mag. Reson. Imaging, 2003, 21(5), p 541-544

    CAS  Google Scholar 

  24. M.F. Cipreste, A.M. Peres, A.A.C. Cotta, F.H. Aragón, A.D.M. Antunes, A.S. Leal, W.A.A. Macedo, and E.M.B. de Sousa, Synthesis and Characterization of 159 Gd-Doped Hydroxyapatite Nanorods for Bioapplications as Theranostic Systems, Mater. Chem. Phys., 2016, 181, p 301-311

    CAS  Google Scholar 

  25. C. Huang, Y. Huang, N. Tian, Y. Tong, and R. Yin, Preparation and Characterization of Gelatin/Cerium(III) Film, J. Rare Earth, 2010, 28(5), p 756-759

    CAS  Google Scholar 

  26. D. Bian, J. Deng, N. Li, X. Chu, Y. Liu, W. Li, H. Cai, P. Xiu, Y. Zhang, Z. Guan, Y. Zheng, Y. Kou, B. Jiang, and R. Chen, In Vitro and In Vivo Studies on Biomedical Magnesium Low-Alloying with Elements Gadolinium and Zinc for Orthopaedic Implant Applications, ACS Appl. Mater. Interfaces., 2018, 10, p 4394-4408

    CAS  Google Scholar 

  27. F. Liao, X.Y. Peng, F. Yang, Q.F. Ke, Z.H. Zhu, and Y.P. Guo, Gadolinium-Doped Mesoporous Calcium Silicate/Chitosan Scaffolds Enhanced Bone Regeneration Ability, Mater. Sci. Eng., C, 2019, 104, p 109999

    Google Scholar 

  28. D. Csontos, U. Zülicke, P. Brusheim, and H.Q. Xu, Lande-Like Formula for the g Factors of Hole-Nanowire Subband Edges, Phys. Rev. B, 2008, 78(3), p 1-4

    Google Scholar 

  29. Y. Huang, J. He, L. Gan, X. Liu, Y. Wu, F. Wu, and Z.-W. Gu, Osteoconductivity and Osteoinductivity of Porous Hydroxyapatite Coatings Deposited by Liquid Precursor Plasma Spraying: In Vivo Biological Response Study, Biomed. Mater., 2014, 9(6), p 065007-065018

    CAS  Google Scholar 

  30. P. Bansal, G.T. Singh, and H.S. Sidhu, Investigation of Corrosion Behavior and Surface Properties of Plasma Sprayed HA/Sr Reinforced Coatings on CoCr Alloys, Mater. Chem. Phys., 2020, 253, p 123330

    CAS  Google Scholar 

  31. R. Gonzalez, H. Ashrafizadeh, A. Lopera, P. Mertiny, and A. McDonald, A Review of Thermal Spray Metallization of Polymer-Based Structures, J. Therm. Spray Technol., 2016, 6(7), p 415-438

    Google Scholar 

  32. M. Gell, E.H. Jordan, M. Teicholz, B.M. Cetegen, N.P. Padture, L. Xie, D. Chen, X. Ma, and J. Roth, Thermal Barrier Coatings Made by the Solution Precursor Plasma Spray Process, J. Therm. Spray Technol., 2007, 17(1), p 124-135

    Google Scholar 

  33. E. Gozali, S. Kamnis, and S. Gu, Analysis of Liquid Feedstock Behavior in High Velocity Suspension Flame Spraying for the Development of Nanostructured Coatings, J. Therm. Spray Technol., 2013, 13(15), p 418-425

    Google Scholar 

  34. G. Bolelli, V. Cannillo, R. Gadow, A. Killinger, L. Lusvarghi, J. Rauch, and M. Romagnoli, Effect of the Suspension Composition on the Microstructural Properties of High Velocity Suspension Flame Sprayed (HVSFS) Al2O3 Coatings, Surf. Coat. Technol., 2010, 204(8), p 1163-1179

    CAS  Google Scholar 

  35. E. Bemporad, G. Bolelli, V. Cannillo, D. De Felicis, R. Gadow, A. Killinger, L. Lusvarghi, J. Rauch, and M. Sebastiani, Structural Characterisation of High Velocity Suspension Flame Sprayed (HVSFS) TiO2 Coatings, Surf. Coat. Technol., 2010, 204(23), p 3902-3910

    CAS  Google Scholar 

  36. C.H. Hou, S.M. Hou, Y.S. Hsueh, J. Lin, H.C. Wu, and F.H. Lin, The In Vivo Performance of Biomagnetic Hydroxyapatite Nanoparticles in Cancer Hyperthermia Therapy, Biomaterials, 2009, 30(23–24), p 3956-3960

    CAS  Google Scholar 

  37. J.L. Ong and D.C.N. Chan, Hydroxapatite and Its Use as a Coating in Dental Implants: A Review, Crit. Rev. Biomed. Eng., 2017, 45(1–6), p 291-320

    Google Scholar 

  38. Z.Y. Li, W.M. Lam, C. Yang, B. Xu, G.X. Ni, S.A. Abbah, K.M. Cheung, K.D. Luk, and W.W. Lu, Chemical Composition, Crystal Size and Lattice Structural Changes After Incorporation of Strontium into Biomimetic Apatite, Biomaterials, 2007, 28(7), p 1452-1460

    CAS  Google Scholar 

  39. F. Heshmatpour, S.H. Lashteneshaee, and M. Samadipour, Study of In Vitro Bioactivity of Nano Hydroxyapatite Composites Doped by Various Cations, J Inorg Organomet, 2018, 28(5), p 2063-2068

    CAS  Google Scholar 

  40. V. Sanysl and R. Raja, Structural and Antibacterial Activity of Hydroxyapatite and Fluorohydroxyapatite Co-substituted with Zirconium-Cerium Ions, Appl. Phys A, 2016, 122(132), p 1-12

    Google Scholar 

  41. W.P. Wijesinghe, M.M. Mantilaka, E.V. Premalal, H.M. Herath, S. Mahalingam, M. Edirisinghe, R.P. Rajapakse, and R.M. Rajapakse, Facile Synthesis of Both Needle-Like and Spherical Hydroxyapatite Nanoparticles: Effect of Synthetic Temperature and Calcination on Morphology, Crystallite Size and Crystallinity, Mater. Sci. Eng. C Mater. Biol. Appl., 2014, 42, p 83-90

    CAS  Google Scholar 

  42. S. Jarudilokkul, W. Tanthapanichakoon, and V. Boonamnuayvittaya, Synthesis of Hydroxyapatite Nanoparticles Using an Emulsion Liquid Membrane System, Colloid Surface A, 2007, 296(1–3), p 149-153

    CAS  Google Scholar 

  43. Y. Huang, L. Song, T. Huang, X. Liu, Y. Xiao, Y. Wu, F. Wu, and Z. Gu, Characterization and Formation Mechanism of Nano-Structured Hydroxyapatite Coatings Deposited by the Liquid Precursor Plasma Spraying Process, Biomed. Mater., 2010, 5(5), p 054113-054420

    Google Scholar 

  44. N. George, M. Mahon, and A. McDonald, Bactericidal Performance of Flame-Sprayed Nanostructured Titania-Copper Composite Coatings, J. Therm. Spray Technol., 2010, 19(5), p 1042-1053

    CAS  Google Scholar 

  45. S. Sharma, Y.A. Jaimes-Lizcano, R.B. McLay, P.C. Cirino, and J.C. Conrad, Subnanometric Roughness Affects the Deposition and Mobile Adhesion of Escherichia Coli on Silanized Glass Surfaces, Langmuir, 2016, 32(21), p 5422-5433

    CAS  Google Scholar 

  46. X. Li, M. Qi, C. Li, B. Dong, J. Wang, M.D. Weir, S. Imazato, L. Du, C.D. Lynch, L. Xu, Y. Zhou, L. Wang, and H.H.K. Xu, Novel Nanoparticles of Cerium-Doped Zeolitic Imidazolate Frameworks with Dual Benefits of Antibacterial and Anti-Inflammatory Functions Against Periodontitis, J. Mater. Chem. B, 2019, 7(44), p 6955-6971

    CAS  Google Scholar 

  47. H. Ruan, C. Fan, X. Zheng, Y. Zhang, and Y. Chen, In Vitro Antibacterial and Osteogenic Properties of Plasma Sprayed Silver-Containing Hydroxyapatite Coating, Sci. Bull., 2009, 54(23), p 4438-4445

    CAS  Google Scholar 

  48. M.C. Dodd, H.E. Kolher, and A.V. Gunten, Oxidation of Antibacterial Compounds by Ozone and Hydroxyl Radical: Elimination of Biological Activity During Aqueous Ozonation Processes, Environ. Sci. Technol., 2009, 43, p 2498-2504

    CAS  Google Scholar 

  49. P. Liu, Y. Liu, Z.X. Xie, A.X. Hou, P. Shen, and S.S. Qu, Microcalorimetric Studies of the Action of Er3+ on Halobacterium Halobium R1 Growth, Bio Trace Elem. Res., 2005, 104, p 275-285

    Google Scholar 

Download references

Acknowledgments

This research was supported by National Natural Science Foundation of China (Grant # 52071329), Zhejiang Provincial Natural Science Foundation of China (Grant # LY18C100003), The Youth Innovation Promotion Association of the Chinese Academy of Sciences, China (Grant # 2020299) and S&T Innovation 2025 Major Special Programme of Ningbo, China (Grants # 2020Z095). Jiangxi Province Key Research and Development Projects of China (Grants # 20192BBE50033 and 20202BBEL53031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 10th Asian Thermal Spray Conference (ATSC 2020) and has been expanded from the original presentation. ATSC 2020 was held in Ningbo, China, from November 1-3, 2020, and was organized by the Asian Thermal Spray Society with Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences as the Host Organizer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Liu, J., Ren, Q. et al. Development of Novel Thermal Sprayed Hydroxyapatite-Rare Earth (HA-Re) Coatings for Potential Antimicrobial Applications in Orthopedics. J Therm Spray Tech 30, 886–897 (2021). https://doi.org/10.1007/s11666-021-01154-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01154-6

Keywords

Navigation