Skip to main content

Advertisement

Log in

Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Lithium metal batteries (LMBs) are ideal candidates for next-generation high energy density energy storage systems. However, uncontrollable growth of Li dendrites due to uneven Li plating has restricted the practical application of the Li metal anode. Here, we develop a highly lithiophilic Zn coating on commercial Cu foil as a substrate for Li metal anode to settle above issues. We find that the lithiophilic nature of Zn can facilitate homogeneous nucleation and deposition of Li on Cu current collector surface. In addition, the uniform Zn coating can not only decrease the nucleation overpotential but also regulate the electric field distribution. Benefiting from the coated Zn layer, the designed anode for half-cell and full-cell tests shows better electrochemical performances compared with the untreated Cu foil. This work provides a simple and effective way to enable a promising dendrite-free lithium metal anode for large-scale industrial applications.

Graphical abstract

摘要

锂金属电池被以为是下一代高能量密度储能系统的理想候选者。然而, 由于镀锂不均匀而导致的锂枝晶的不可控生长限制了金属锂阳极的实际应用。在此, 我们在商用铜箔上开发了一种高亲锂性的锌涂层作为金属锂阳极的基底, 以解决上述问题。我们发现, 锌的亲锂性可以促进锂在铜集电体表面的均匀成核和沉积。此外, 均匀的锌涂层不仅可以降低成核过电位, 还可以调节电场分布。受益于涂层的锌层, 设计的阳极在半电池和全电池测试中与未处理的铜箔相比显示出更好的电化学性能。这项工作为大规模工业应用提供了一种简单而有效的方法来实现有前途的无枝晶金属锂阳极。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu M, Liao J, Yu L, Lv R, Li P, Sun W, Tan R, Duan X, Zhang L, Li F, Kim J, Shin KH, Seok PH, Zhang W, Guo Z, Wang H, Tang Y, Gorgolis G, Galiotis C, Ma J. 2020 roadmap on carbon materials for energy storage and conversion. Chem Asian J. 2020;15(7):995.

    Article  CAS  Google Scholar 

  2. Ma J, Li Y, Grundish NS, Goodenough JB, Chen Y, Guo L, Peng Z, Qi X, Yang F, Qie L, Wang CA, Huang B, Huang Z, Chen L, Su D, Wang G, Peng X, Chen Z, Yang J, He S, Zhang X, Yu H, Fu C, Jiang M, Deng W, Sun CF, Pan Q, Tang Y, Li X, Ji X, Wan F, Niu Z, Lian F, Wang C, Wallace GG, Fan M, Meng Q, Xin S, Guo YG, Wan LJ. The 2021 battery technology roadmap. J Phys D Appl Phys. 2021;54(18):183001.

    Article  CAS  Google Scholar 

  3. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.

    Article  CAS  Google Scholar 

  4. He P, Yan MY, Zhang GB, Sun RM, Chen LN, An QY, Mai LQ. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater. 2017;7(11):1601920.

    Article  Google Scholar 

  5. Pu KC, Zhang X, Qu XL, Hu JJ, Li HW, Gao MX, Pan HG, Liu YF. Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Met. 2020;39(6):616.

    Article  CAS  Google Scholar 

  6. Lu W, Wu C, Wei W, Ma J, Chen L, Chen Y. Lithiophilic NiO hexagonal plates decorated Ni collector guiding uniform lithium plating for stable lithium metal anode. J Mater Chem A. 2019;7(42):24262.

    Article  CAS  Google Scholar 

  7. Wu C, Huang H, Lu W, Wei Z, Ni X, Sun F, Qing P, Liu Z, Ma J, Wei W, Chen L, Yan C, Mai L. Mg doped Li–LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries. Adv Sci. 2020;7(6):1902643.

    Article  CAS  Google Scholar 

  8. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    Article  CAS  Google Scholar 

  9. Shen X, Liu H, Cheng XB, Yan C, Huang JQ. Beyond lithium ion batteries: higher energy density battery systems based on lithium metal anodes. Energy Storage Mater. 2018;12:161.

    Article  Google Scholar 

  10. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.

    Article  CAS  Google Scholar 

  11. Dornbusch DA, Hilton R, Lohman SD, Suppes GJ. Experimental validation of the elimination of dendrite short-circuit failure in secondary lithium-metal convection cell batteries. J Electrochem Soc. 2014;162(3):A262.

    Article  Google Scholar 

  12. Aurbach D, Zinigrad E, Teller H, Dan P. Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc. 2000;147(4):1274.

    Article  CAS  Google Scholar 

  13. Yin J, Yu J, Shi X, Kong W, Zhou Z, Man J, Sun J, Wen Z. TiO2 quantum dots confined in 3D carbon framework for outstanding surface lithium storage with improved kinetics. J Colloid Interface Sci. 2021;582:874.

    Article  CAS  Google Scholar 

  14. Yoon G, Moon S, Ceder G, Kang K. Deposition and stripping behavior of lithium metal in electrochemical system: continuum mechanics study. Chem Mater. 2018;30(19):6769.

    Article  CAS  Google Scholar 

  15. Wang H, Tang Y. Artificial solid electrolyte interphase acting as “armor” to protect the anode materials for high-performance lithium-ion battery. Chem Res Chin Univ. 2020;36(3):402.

    Article  CAS  Google Scholar 

  16. Wu M, Li Y, Liu X, Yang S, Ma J, Dou S. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat. 2021;2(1):5.

    Article  Google Scholar 

  17. Wood KN, Kazyak E, Chadwick AF, Chen KH, Zhang JG, Thornton K, Dasgupta NP. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent Sci. 2016;2(11):790.

    Article  CAS  Google Scholar 

  18. Lu D, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J, Engelhard MH, Saenz NT, Henderson WA. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater. 2015;5(3):1400993.

    Article  Google Scholar 

  19. Bai P, Li J, Brushett FR, Bazant MZJE, Science E. Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ Sci. 2016;9(10):3221.

    Article  CAS  Google Scholar 

  20. Shen X, Ji H, Liu J, Zhou J, Yan C, Qian T. Super lithiophilic SEI derived from quinones electrolyte to guide Li uniform deposition. Energy Storage Mater. 2020;24:426.

    Article  Google Scholar 

  21. Wang Q, Yang C, Zhang Y, Yang J, Wu K, Hu C, Lu J, Liu W, Zhou H. Surface-based Li+ complex enables uniform lithium deposition for stable lithium metal anodes. ACS Appl Energy Mater. 2019;2(7):4602.

    Article  CAS  Google Scholar 

  22. Yao YX, Zhang XQ, Li BQ, Yan C, Chen PY, Huang JQ, Zhang Q. A compact inorganic layer for robust anode protection in lithium-sulfur batteries. InfoMat. 2019;2(2):379.

    Article  Google Scholar 

  23. Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat Nanotechnol. 2014;9(8):618.

    Article  CAS  Google Scholar 

  24. Liu X, Liu J, Qian T, Chen H, Yan C. Novel organophosphate-derived dual-layered interface enabling air-stable and dendrite-free lithium metal anode. Adv Mater. 2019;32(2):1902724.

    Article  Google Scholar 

  25. Wang F, Liu ZB, Wang KX, Zhu XD, Fan XH, Gao J, Feng YJ, Sun KN, Liu YT. Dandelion-like Co3O4 mesoporous nanostructures supported by a Cu foam for efficient oxygen evolution and lithium storage. Chem Commun (Camb). 2018;54(40):5138.

    Article  CAS  Google Scholar 

  26. Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu YS, Guo X, Li H, Huang X, Yang Y, Nan CW, Chen L. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries. ACS Energy Lett. 2018;3(6):1212.

    Article  CAS  Google Scholar 

  27. Li QH, Xu C, Huang B, Yin X. Sr2+-doped rhombohedral LiHf2(PO4)3 solid electrolyte for all-solid-state Li-metal battery. Rare Met. 2020;39(9):1092.

    Article  CAS  Google Scholar 

  28. Wei WQ, Liu BQ, Gan YQ, Ma HJ, Cui DW. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2020;40(2):409.

    Article  Google Scholar 

  29. Xu CX, Jiang JJ. Designing electrolytes for lithium metal batteries with rational interface stability. Rare Met. 2020;40(2):243.

    Article  Google Scholar 

  30. Yan CL. Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Met. 2020;39(5):458.

    Article  CAS  Google Scholar 

  31. Zhang R, Li NW, Cheng XB, Yin YX, Zhang Q, Guo YG. Advanced micro/nanostructures for lithium metal anodes. Adv Sci (Weinh). 2017;4(3):1600445.

    Article  Google Scholar 

  32. Yan P, Zheng J, Zheng J, Wang Z, Teng G, Kuppan S, Xiao J, Chen G, Pan F, Zhang JG, Wang CM. Ni and Co segregations on selective surface facets and rational design of layered lithium transition-metal oxide cathodes. Adv Energy Mater. 2016;6(9):1502455.

    Article  Google Scholar 

  33. Rosso M, Brissot C, Teyssot A, Dollé M, Sannier L, Tarascon JM, Bouchet R, Lascaud S. Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta. 2006;51(25):5334.

    Article  CAS  Google Scholar 

  34. Yang Z, Xia Y, Ji J, Qiu B, Zhang K, Liu Z. Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries. RSC Adv. 2016;6(15):12107.

    Article  CAS  Google Scholar 

  35. Cheng XB, Peng HJ, Huang JQ, Wei F, Zhang Q. Dendrite-free nanostructured anode: entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small. 2014;10(21):4257.

    Article  CAS  Google Scholar 

  36. Huang HF, Wu C, Liu ZJ, Zeng XP, Chen LB. Non-destructive CT method for spatially resolved measurement of elemental content and density of Li-B alloys. Front Chem. 2020;8:1.

    Article  Google Scholar 

  37. Hou Z, Yu YK, Wang WH, Zhao XX, Di Q, Chen QW, Chen W, Liu YL, Quan Z. Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode. ACS Appl Mater Interfaces. 2019;11(8):8148.

    Article  CAS  Google Scholar 

  38. Zhang C, Lv W, Zhou G, Huang Z, Zhang Y, Lyu R, Wu H, Yun Q, Kang F, Yang QH. Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Adv Energy Mater. 2018;8(21):1703404.

    Article  Google Scholar 

  39. Zhang R, Chen XR, Chen X, Cheng XB, Zhang XQ, Yan C, Zhang Q. Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite-free lithium metal anodes. Angewandte Chemie-International Editio. 2017;56(27):7764.

    Article  CAS  Google Scholar 

  40. Wu S, Wang YF, Liu WL, Ren MM, Kong FG, Wang SJ, Wang XQ, Zhao H, Bao JM. A high-capacity and long-life aqueous rechargeable zinc battery using a porous metal–organic coordination polymer nanosheet cathode. Inorg Chem Front. 2018;5(12):3067.

    Article  CAS  Google Scholar 

  41. Sun C, Li Y, Jin J, Yang J, Wen Z. ZnO nanoarray-modified nickel foam as a lithiophilic skeleton to regulate lithium deposition for lithium-metal batteries. J Mater Chem A. 2019;7(13):7752.

    Article  CAS  Google Scholar 

  42. Pei A, Zheng G, Shi F, Li Y, Cui Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017;17(2):1132.

    Article  CAS  Google Scholar 

  43. Adams BD, Zheng J, Ren X, Xu W, Zhang JG. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv Energy Mater. 2018;8(7):1702097.

    Article  Google Scholar 

  44. Cui J, Yao S, Ihsan-Ul-Haq M, Wu J, Kim JK. Correlation between Li plating behavior and surface characteristics of carbon matrix toward stable Li metal anodes. Adv Energy Mater. 2019;9(1):1802777.

    Article  Google Scholar 

  45. Zhang H, Liao X, Guan Y, Xiang Y, Li M, Zhang W, Zhu X, Ming H, Lu L, Qiu J, Huang Y, Cao G, Yang Y, Mai L, Zhao Y, Zhang H. Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode. Nat Commun. 2018;9(1):1.

    Google Scholar 

  46. Guan X, Wang A, Liu S, Li G, Liang F, Yang YW, Liu X, Luo J. Controlling nucleation in lithium metal anodes. Small. 2018;14(37):1.

    Article  Google Scholar 

  47. Zhang R, Cheng XB, Zhao CZ, Peng HJ, Shi JL, Huang JQ, Wang J, Wei F, Zhang Q. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth. Adv Mater. 2016;28(11):2155.

    Article  CAS  Google Scholar 

  48. Neudeck S, Walther F, Bergfeldt T, Suchomski C, Rohnke M, Hartmann P, Janek J, Brezesinski T. Molecular surface modification of NCM622 cathode material using organophosphates for improved Li-ion battery full-cells. ACS Appl Mater Interfaces. 2018;10(24):20487.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. U1904216, 51771236 and 51901249), the Innovation-Driven Project of Central South University (No. 2020CX007) and the Natural Science Foundation of Hunan Province (No. 2020JJ5719).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Bao Chen or Xiao-Ping Ouyang.

Ethics declarations

Conflicts of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 809 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YX., Lu, WY., Chen, YJ. et al. Coating highly lithiophilic Zn on Cu foil for high-performance lithium metal batteries. Rare Met. 41, 1255–1264 (2022). https://doi.org/10.1007/s12598-021-01811-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01811-3

Keywords

Navigation