Skip to main content
Log in

Improved thermoelectric performance in n-type BiTe facilitated by defect engineering

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

BiTe is a potentially attractive candidate for thermoelectric applications because it is the structural analogue of the state-of-the-art thermoelectric material, bismuth telluride (Bi2Te3). However, BiTe has attracted little attention due to its small band gap and high electron concentration. In this study, remarkable increase in thermoelectric performance in the n-type Bi1−xSbxTe compounds through tuning the carrier concentration with chemical doping is shown. The Seebeck coefficient of Bi1−xSbxTe increases remarkably while the electronic thermal conductivity decreases gradually as Sb content is increased, leading to enhanced thermoelectric figure of merit (ZT). Moreover, the simultaneous optimization of the electrical and thermal transport properties leads the peak temperature of the figure of merit to shift toward lower temperature with Sb content increasing in Bi1−xSbxTe, thus making Bi1−xSbxTe a potential alternative to bismuth telluride for near-room-temperature thermoelectric applications. In addition, the presence of multiple low-frequency optical phonons and their coupling with the long-wavelength heat carrying acoustic phonons in all the Bi1−xSbxTe investigated are revealed based on the combined Debye−Einstein model. The present results provide the underlying mechanism connecting thermoelectric performance and lattice dynamics in Bi1−xSbxTe compounds.

摘要

因其与成熟的室温热电材料Bi2Te3具有类似的结构, BiTe被认为在热电材料领域具有潜在的应用价值。但是, 受限于禁带宽度较小、载流子浓度过高等特点, BiTe的热电性能依旧处于很低的水平。本工作通过在BiTe样品中掺入Sb元素的方法来调节材料的载流子浓度, 从而显著提高了n型Bi1−xSbxTe化合物的热电性能。研究发现, 随着Sb含量的增加, Bi1−xSbxTe的塞贝克系数显著增加、电子热导率逐渐降低, 从而使得Bi1−xSbxTe材料的热电优值得以提高。进一步发现, 电、热输运行为的协同优化会导致Bi1−xSbxTe的热电优值峰值温度随着Sb含量的增加而逐渐向低温端移动, 这使得Bi1−xSbxTe成为近室温热电应用领域的明星材料Bi2Te3的潜在替代品。此外, 基于德拜—爱因斯坦模型, 本工作揭示了Bi1−xSbxTe材料中多个低频光学声子的存在以及这些光学声子与载热的声学声子之间的耦合关系, 从而将Bi1−xSbxTe化合物的热电性能与晶格动力学联系起来。

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. DiSalvo FJ. Thermoelectric cooling and power generation. Science. 1999;285(5428):703.

    Article  CAS  Google Scholar 

  2. Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Thinking like a chemist: intuition in thermoelectric materials. Angew Chem Int Ed. 2016;55(24):6826.

    Article  CAS  Google Scholar 

  3. Snyder GJ, Toberer ES. Complex thermoelectric materials. Nat Mater. 2008;7(2):105.

    Article  CAS  Google Scholar 

  4. Tritt TM, Böttner H, Chen LD. Thermoelectrics: direct solar thermal energy conversion. MRS Bull. 2011;33(4):366.

    Article  Google Scholar 

  5. Tritt TM, Subramanian MA. Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 2006;31(3):188.

    Article  Google Scholar 

  6. Minnich AJ, Dresselhaus MS, Ren ZF, Chen G. Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci. 2009;2(5):466.

    Article  CAS  Google Scholar 

  7. Dresselhaus MS, Chen G, Tang MY, Yang RG, Lee H, Wang DZ, Ren ZF, Fleurial JP, Gogna P. New directions for low-dimensional thermoelectric materials. Adv Mater. 2007;19(8):1043.

    Article  CAS  Google Scholar 

  8. Rhyee JS, Lee KH, Lee SM, Cho E, Kim SI, Lee E, Kwon YS, Shim JH, Kotliar G. Peierls distortion as a route to high thermoelectric performance in In4Se3−δ crystals. Nature. 2009;459(7249):965.

    Article  CAS  Google Scholar 

  9. Heremans JP, Jovovic V, Toberer ES, Saramat A, Kurosaki K, Charoenphakdee A, Yamanaka S, Snyder GJ. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science. 2008;321(5888):554.

    Article  CAS  Google Scholar 

  10. Slade TJ, Pal K, Grovogui JA, Bailey TP, Male J, Khoury JF, Zhou XQ, Chung DY, Snyder GJ, Uher C, Dravid VP, Wolverton C, Kanatzidis MG. Contrasting SnTe-NaSbTe2 and SnTe-NaBiTe2 thermoelectric alloys: high performance facilitated by increased cation vacancies and lattice softening. J Am Chem Soc. 2020;142(28):12524.

    Article  CAS  Google Scholar 

  11. Perumal S, Samanta M, Ghosh T, Shenoy US, Bohra AK, Bhattacharya S, Singh A, Waghmare UV, Biswas K. Realization of high thermoelectric figure of merit in GeTe by complementary co-doping of Bi and In. Joule. 2019;3(10):2565.

    Article  CAS  Google Scholar 

  12. Biswas K, He JQ, Zhang QC, Wang GY, Uher C, Dravid VP, Kanatzidis MG. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat Chem. 2011;3(2):160.

    Article  CAS  Google Scholar 

  13. Snyder GJ, Christensen M, Nishibori E, Caillat T, Iversen BB. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties. Nat Mater. 2004;3(7):458.

    Article  CAS  Google Scholar 

  14. Biswas K, He JQ, Blum ID, Wu CI, Hogan TP, Seidman DN, Dravid VP, Kanatzidis MG. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature. 2012;489(7416):414.

    Article  CAS  Google Scholar 

  15. Xiao C, Li Z, Li K, Huang PC, Xie Y. Decoupling interrelated parameters for designing high performance thermoelectric materials. Acc Chem Res. 2014;47(4):1287.

    Article  CAS  Google Scholar 

  16. Kim W. Strategies for engineering phonon transport in thermoelectrics. J Mater Chem C. 2015;3(40):10336.

    Article  CAS  Google Scholar 

  17. Pei YZ, Shi XY, LaLonde A, Wang H, Chen LD, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. Nature. 2011;473(7345):66.

    Article  CAS  Google Scholar 

  18. Tang YL, Gibbs ZM, Agapito LA, Li GD, Kim HS, Nardelli MB, Curtarolo S, Snyder GJ. Convergence of multi-valley bands as the electronic origin of high thermoelectric performance in CoSb3 skutterudites. Nat Mater. 2015;14(12):1223.

    Article  CAS  Google Scholar 

  19. Witting IT, Chasapis TC, Ricci F, Peters M, Heinz NA, Hautier G, Snyder GJ. The thermoelectric properties of bismuth telluride. Adv Electron Mater. 2019;5(6):1800904.

    Article  Google Scholar 

  20. Zhu TJ, Hu LP, Zhao XB, He J. New insights into intrinsic point defects in V2VI3 thermoelectric materials. Adv Sci. 2016;3(7):1600004.

    Article  Google Scholar 

  21. Yang YX, Wu YH, Zhang Q, Cao GS, Zhu TJ, Zhao XB. Enhanced thermoelectric performance of Bi2Se3/TiO2 composite. Rare Met. 2020;39(8):887.

    Article  CAS  Google Scholar 

  22. Xu B, Feng TL, Agne MT, Zhou L, Ruan XL, Snyder GJ, Wu Y. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures. Angew Chem Int Ed Engl. 2017;56(13):3546.

  23. Samanta M, Pal K, Pal P, Waghmare UV, Biswas K. Localized vibrations of Bi bilayer leading to ultralow lattice thermal conductivity and high thermoelectric performance in weak topological insulator n-type BiSe. J Am Chem Soc. 2018;140(17):5866.

    Article  CAS  Google Scholar 

  24. Samanta M, Pal K, Waghmare UV, Biswas K. Intrinsically low thermal conductivity and high carrier mobility in dual topological quantum material, n-type BiTe. Angew Chem Int Ed Engl. 2020;59(12):4822.

    Article  CAS  Google Scholar 

  25. Bos JWG, Zandbergen HW, Lee MH, Ong NP, Cava RJ. Structures and thermoelectric properties of the infinitely adaptive series(Bi2)m(Bi2Te3)n. Phys Rev B. 2007;75(19):195203.

    Article  Google Scholar 

  26. Zhang Q, Fang T, Liu F, Li AR, Wu YH, Zhu TJ, Zhao XB. Tuning optimum temperature range of Bi2Te3-based thermoelectric materials by defect engineering. Chem Asian J. 2020;15(18):2775.

    Article  CAS  Google Scholar 

  27. Zhu TJ, Liu YT, Fu CG, Heremans JP, Snyder JG, Zhao XB. Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater. 2017;29(14).

  28. Wang Z, Fan CC, Shen ZX, Hua CQ, Hu QF, Sheng F, Lu YH, Fang HY, Qiu ZZ, Lu J, Liu ZT, Liu WL, Huang YB, Xu ZA, Shen DW, Zheng Y. Defects controlled hole doping and multivalley transport in SnSe single crystals. Nat Commun. 2018;9(1):47.

    Article  Google Scholar 

  29. Zhou CJ, Yu Y, Lee YL, Ge BZ, Lu WQ, Cojocaru-Miredin O, Im J, Cho SP, Wuttig M, Shi ZQ, Chung I. Exceptionally high average power factor and thermoelectric figure of merit in n-type PbSe by the dual incorporation of Cu and Te. J Am Chem Soc. 2020;142(35):15172.

    Article  CAS  Google Scholar 

  30. Jana MK, Pal K, Warankar A, Mandal P, Waghmare UV, Biswas K. Intrinsic rattler-induced low thermal conductivity in zintl type TlInTe2. J Am Chem Soc. 2017;139(12):4350.

    Article  CAS  Google Scholar 

  31. Sarkar D, Ghosh T, Roychowdhury S, Arora R, Sajan S, Sheet G, Waghmare UV, Biswas K. Ferroelectric instability induced ultralow thermal conductivity and high thermoelectric performance in rhombohedral p-type GeSe crystal. J Am Chem Soc. 2020;142(28):12237.

    Article  CAS  Google Scholar 

  32. Dutta M, Matteppanavar S, Prasad MVD, Pandey J, Warankar A, Mandal P, Soni A, Waghmare UV, Biswas K. Ultralow thermal conductivity in chain-like TlSe due to inherent Tl+ rattling. J Am Chem Soc. 2019;141(51):20293.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (Nos. 2018YFB0703602 and 2017YFA0303500), the National Natural Science Foundation of China (Nos. 21622107 and U1832142), the Youth Innovation Promotion Association CAS (No. 2016392), the Fundamental Research Funds for the Central University (No. WK2340000094) and the Key Research Program of Frontier Sciences (No. QYZDY-SSW-SLH011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Xiao.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DTD 44 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhao, JY. & Xiao, C. Improved thermoelectric performance in n-type BiTe facilitated by defect engineering. Rare Met. 40, 2829–2837 (2021). https://doi.org/10.1007/s12598-021-01737-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01737-w

Keywords

Navigation