Skip to main content
Log in

A review of non-noble metal-based electrocatalysts for CO2 electroreduction

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The excessive emission of CO2 has caused many environmental issues and is severely threatening the eco-system. CO2 electroreduction reaction (CO2RR) that driven by sustainable power is an ideal route for realizing the net reduction of CO2 and carbon recycle. Developing efficient electrocatalysts with low cost and high performance is critical for the wide applications of CO2RR electrolysis. Among the various explored CO2RR catalysts, non-noble metal (NNM)-based nanomaterials have drawn increasing attentions due to the remarkable performance and low cost. In this mini-review, the recent advances of NNM-based CO2RR catalysts are summarized, and the catalysts are classified based on their corresponding reduction products. The preparation strategies for engineering the electrocatalysts are introduced, and the relevant CO2RR mechanisms are discussed in detail. Finally, the current challenges in CO2RR research are presented, and some perspectives are proposed for the future development of CO2RR technology. This mini-review introduces the recent advances and frontiers of NNM-based CO2RR catalysts, which should shed light on the further exploration of efficient CO2RR electrocatalysts.

Graphical abstract

摘要

二氧化碳的过度排放已经导致一系列环境问题并严重威胁着生态系统的安全。利用可再生电能驱动的二氧化碳电化学还原 (CO2 electroreduction reaction, CO2RR) 反应是一种实现CO2减排和碳循环的理想途径。而开发低成本高效的电催化剂是实现CO2RR实际应用的关键。在种类繁多的CO2RR催化剂中, 非贵金属基(non-noble metal, NNM) 纳米材料由于其较高的活性和较低的成本而备受关注。本综述总结了非贵金属基CO2RR催化材料的近期研究进展并基于其还原产物进行了分类。同时, 本文针对相关材料的制备策略及其CO2RR反应机制进行了详细介绍。最后, 本文总结了目前CO2RR领域的研究难点并为其今后的进一步发展进行了展望。本综述旨在通过介绍非贵金属基CO2RR催化剂的研究进展, 从而为高效CO2RR催化材料的研发提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced with permission from Ref. [10]. Copyright 2020, Wiley–VCH GmbH, Weinheim

Fig. 3

Reproduced with permission from Ref. [41]. Copyright 2019, American Chemical Society. d SEM image and e AFM image and height distribution of BiOI nanosheets; f Faradaic efficiencies of different products on different catalysts. Reproduced with permission from Ref. [42]. Copyright 2018, Nature Publishing Group

Fig. 4

Reproduced with permission from Ref. [43]. Copyright 2019, Royal Society of Chemistry

Fig. 5

Reproduced with permission from Ref. [44]. Copyright 2016, Nature Publishing Group. c SEM and d STEM images of Bi-Sn catalysts, e formate Faradaic efficiency on different electrodes and f projected density of states of different orbitals on Sn (101) and Bi-Sn (101) surfaces with adsorbed HCOO*. Reproduced with permission from Ref. [45]. Copyright 2018, Wiley–VCH GmbH, Weinheim

Fig. 6

Reproduced with permission from Ref. [46]. Copyright 2020, Wiley–VCH GmbH, Weinheim

Fig. 7

Reproduced with permission from Ref. [47]. Copyright 2020, Royal Society of Chemistry

Fig. 8

Reproduced with permission from Ref. [48]. Copyright 2019, Nature Publishing Group

Fig. 9

Reproduced with permission from Ref. [51]. Copyright 2020, Wiley–VCH GmbH, Weinheim. d Free energy changes of CO2RR for different samples. Reproduced with permission from Ref. [52]. Copyright 2017, American Chemical Society

Fig. 10

Reproduced with permission from Ref. [53]. Copyright 2020, Wiley–VCH GmbH, Weinheim. d characterizations of Ni-N3-V sample, e CO Faradaic efficiencies of different samples and f free energy change for the CO2RR to CO of different samples. Reproduced with permission from Ref. [54]. Copyright 2020, Wiley–VCH GmbH, Weinheim

Fig. 11

Reproduced with permission from Ref. [56]. Copyright 2018, American Chemical Society. c TEM image and d fitting of EXAFS data of CoSA/HCNFs. Reproduced with permission from Ref. [57]. Copyright 2020, Elsevier

Fig. 12

Reproduced with permission from Ref. [61]. Copyright 2019, American Association for the Advancement of Science

Fig. 13

Reproduced with permission from Ref. [64]. Copyright 2019, Nature Publishing Group

Fig. 14

Reproduced with permission from Ref. [66]. Copyright 2018, American Chemical Society. e STEM image of ZnN4/C, f TOFs of Zn Nx/C catalyst and g free energy changes of CO2RR on different catalysts. Reproduced with permission from Ref. [67]. Copyright 2018, Wiley–VCH GmbH, Weinheim

Fig. 15

Reproduced with permission from Ref. [68]. Copyright 2018, American Chemical Society. d SEM images of prism Cu catalyst. Reproduced with permission from Ref. [69]. Copyright 2018, American Chemical Society

Fig. 16

Copyright 2019, Nature Publishing Group. b TEM image of catalyst, c formate Faradaic efficiency and current density of different samples and d current density and onset potential of different catalysts. Reproduced with permission from Ref. [71]. Copyright 2020, Wiley–VCH GmbH, Weinheim

Fig. 17

Reproduced with permission from Ref. [75]. Copyright 2019, Nature Publishing Group. d In-situ SERS patterns of CO2RR at Ag electrode surface during CO2RR test. Reproduced with permission from Ref. [78]. Copyright 2020, American Chemical Society. e In-situ ATR-IR profiles of Pd/C-based catalysts during CO2RR. Reproduced with permission from Ref. [79]. Copyright 2020, Royal Society of Chemistry

Fig. 18

Reproduced with permission from Ref. [80]. Copyright 2019, Wiley–VCH GmbH, Weinheim

Similar content being viewed by others

References

  1. Qiao JL, Liu YY, Hong F, Zhang JJ. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev. 2014;43(2):631.

    CAS  Google Scholar 

  2. Li Y. Hybrid atomic layers based electrocatalyst converts waste CO2 into liquid fuel. Sci China Mater. 2016;59(1):1.

    Google Scholar 

  3. Li X, Wang J. One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat. 2020;2(1):3.

    Google Scholar 

  4. Liang Y, Zhao C, Yuan H, Chen Y, Zhang W, Huang J, Yu D, Liu Y, Titirici M, Chueh Y, Yu H, Zhang Q. A review of rechargeable batteries for portable electronic devices. InfoMat. 2019;1(1):6.

    CAS  Google Scholar 

  5. Yang Y, Tang Y, Jiang H, Chen Y, Wan P, Fan M, Zhang R, Ullah S, Pan L, Zou JJ, Lao M, Sun W, Yang C, Zheng G, Peng Q, Wang T, Luo Y, Sun X, Konev AS, Levin OV, Lianos P, Zhuofeng H, Shen Z, Zhao Q, Wang Y, Todorova N, Trapalis C, Sheridan MV, Wang H, Zhang L, Sun S, Wang W, Ma J. 2020 Roadmap on gas-involved photo- and electro- catalysis. Chin Chem Lett. 2019;30(12):2089.

    CAS  Google Scholar 

  6. Guo SJ, Huang XQ, Zhang Q. Editorial for special issue on metal-based materials for energy catalysis. Rare Met. 2020;39(7):748.

    CAS  Google Scholar 

  7. Wang YF, Li YX, Wang ZY, Allan P, Zhang FC, Lu ZG. Reticular chemistry in electrochemical carbon dioxide reduction. Sci China Mater. 2020;63(7):1113.

    CAS  Google Scholar 

  8. Chen XH, Wei Q, Hong JD, Xu R, Zhou TH. Bifunctional metal–organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Met. 2019;38(5):413.

    CAS  Google Scholar 

  9. Yang CH, Nosheen F, Zhang ZC. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01600-4.

    Article  Google Scholar 

  10. Han N, Ding P, He L, Li YY, Li YG. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv Energy Mater. 2020;10(11):1902338.

    CAS  Google Scholar 

  11. Xie Z, Xu Y, Xie M, Chen X, Lee JH, Stavitski E, Kattel S, Chen JG. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat Commun. 2020;11(1):1887.

    CAS  Google Scholar 

  12. Zhao Y, Liu J, Han ML, Yang GP, Ma LF, Wang YY. Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01597-w.

    Article  Google Scholar 

  13. Sun KH, Rui N, Zhang ZT, Su ZY, Ge QF, Liu CJ. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability. Green Chem. 2020;22(15):5059.

    CAS  Google Scholar 

  14. Ni F, Yang H, Wen Y, Bai H, Zhang L, Cui C, Li S, He S, Cheng T, Zhang B, Peng H. N-modulated Cu+ for efficient electrochemical carbon monoxide reduction to acetate. Sci China Mater. 2020. https://doi.org/10.1007/s40843-020-1440-6.

    Article  Google Scholar 

  15. Lee JH, Kattel S, Xie Z, Tackett BM, Wang J, Liu CJ, Chen JG. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv Funct Mater. 2018;28(45):1804762.

    Google Scholar 

  16. Ding WL, Cao YH, Liu H, Wang AX, Zhang CJ, Zheng XR. In situ growth of NiSe@Co0.85 heterointerface structure with electronic modulation on nickel foam for overall water splitting. Rare Met. 2020;1(1):21.

    Article  CAS  Google Scholar 

  17. Li F, Thevenon A, Rosas-Hernandez A, Wang Z, Li Y, Gabardo CM, Ozden A, Cao TD, Li J, Wang Y, Edwards JP, Xu Y, McCallum C, Tao L, Liang ZQ, Luo M, Wang X, Li H, O’Brien CP, Tan CS, Nam DH, Quintero-Bermudez R, Zhuang TT, Li YC, Han Z, Britt RD, Sinton D, Agapie T, Peters JC, Sargent EH. Molecular tuning of CO2-to-ethylene conversion. Nature. 2020;577(7791):509.

    CAS  Google Scholar 

  18. Yue Z, Ou C, Ding N, Tao L, Zhao J, Chen J. Advances in metal phthalocyanine based carbon composites for electrocatalytic CO2 reduction. ChemCatChem. 2020. https://doi.org/10.1002/cctc.202001126.

    Article  Google Scholar 

  19. Calvinho KUD, Laursen AB, Yap KMK, Goetjen TA, Hwang S, Murali N, Mejia-Sosa B, Lubarski A, Teeluck KM, Hall ES, Garfunkel E, Greenblatt M, Dismukes GC. Selective CO2 reduction to C-3 and C-4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy Environ Sci. 2018;11(1):2550.

    CAS  Google Scholar 

  20. Kang P, Chen Z, Brookhart M, Meyer TJ. Electrocatalytic reduction of carbon dioxide: let the molecules do the work. Top Catal. 2015;58(1):30.

    CAS  Google Scholar 

  21. Li F, Zhao SF, Chen L, Khan A, MacFarlane DR, Zhang J. Polyethylenimine promoted electrocatalytic reduction of CO2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy Environ Sci. 2016;9(1):216.

    CAS  Google Scholar 

  22. Zhou Y, Han N, Li YG. Recent progress on Pd-based nanomaterials for electrochemical CO2 reduction. Acta Phys Chim Sin. 2020;36(9):2001041.

    Google Scholar 

  23. Gao S, Lin Y, Jiao X, Sun Y, Luo Q, Zhang W, Li D, Yang J, Xie Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature. 2016;529(7584):68.

    CAS  Google Scholar 

  24. Yang J, Qiu Z, Zhao C, Wei W, Chen W, Li Z, Qu Y, Dong J, Luo J, Li Z, Wu Y. Insitu thermal atomization to convert supported nickel nanoparticles into surface-bound nickel single-atom catalysts. Angew Chem Int Ed. 2018;57(43):14095.

    CAS  Google Scholar 

  25. Chen JG. Electrochemical CO2 reduction via low-valent nickel single-atom catalyst. Joule. 2018;2(4):587.

    CAS  Google Scholar 

  26. Gu YX, Yang J, Wang DH. Electrochemical features of carbon prepared by molten salt electro-reduction of CO2. Acta Phys Chim Sin. 2019;35(2):208.

    Google Scholar 

  27. Costentin C, Robert M, Saveant JM. Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev. 2013;42(6):2423.

    CAS  Google Scholar 

  28. Lu XL, Rong X, Zhang C, Lu TB. Carbon-based single-atom catalysts for CO2 electroreduction: progress and optimization strategies. J Mater Chem A. 2020;8(21):10695.

    CAS  Google Scholar 

  29. Wu Y, Cao S, Hou J, Li Z, Zhang B, Zhai P, Zhang Y, Sun L. Rational design of nanocatalysts with nonmetal species modification for electrochemical CO2 reduction. Adv Energy Mater. 2020;10(29):2000588.

    CAS  Google Scholar 

  30. Chang Q, Kim J, Lee JH, Kattel S, Chen JG, Choi SI, Chen Z. Boosting activity and selectivity of CO2 electroreduction by pre-hydridizing Pd nanocubes. Small. 2020;16:2005305.

    CAS  Google Scholar 

  31. Liu A, Gao M, Ren X, Meng F, Yang Y, Gao L, Yang Q, Ma T. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. J Mater Chem A. 2020;8(7):3541.

    CAS  Google Scholar 

  32. Nguyen TN, Salehi M, Van Quyet L, Seifitokaldani A, Cao TD. Fundamentals of electrochemical CO2 reduction on single-metal-atom catalysts. ACS Catal. 2020;10(17):10068.

    Google Scholar 

  33. Li M, Garg S, Chang X, Ge L, Li L, Konarova M, Rufford TE, Rudolph V, Wang G. Toward excellence of transition metal-based catalysts for CO2 electrochemical reduction: an overview of strategies and rationales. Small Methods. 2020;4(7):2000033.

    CAS  Google Scholar 

  34. Li J, Zhu M, Han YF. Recent advances in electrochemical CO2 reduction on indium-based catalysts. ChemCatChem. 2020. https://doi.org/10.1002/cctc.202001350.

    Article  Google Scholar 

  35. Woldu AR. From low to high-index facets of noble metal nanocrystals: a way forward to enhance the performance of electrochemical CO2 reduction. Nanoscale. 2020;12(16):8626.

    CAS  Google Scholar 

  36. Benson EE, Kubiak CP, Sathrum AJ, Smieja JM. Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels. Chem Soc Rev. 2009;38(1):89.

    CAS  Google Scholar 

  37. Birdja YY, Perez-Gallent E, Figueiredo MC, Gottle AJ, Calle-Vallejo F, Koper MTM. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy. 2019;4(9):732.

    CAS  Google Scholar 

  38. Yoo JS, Christensen R, Vegge T, Norskov JK, Studt F. Theoretical Insight into the trends that guide the electrochemical reduction of carbon dioxide to formic acid. Chemsuschem. 2016;9(4):358.

    CAS  Google Scholar 

  39. Fan L, Xia C, Yang F, Wang J, Wang H, Lu Y. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci Adv. 2020;6(8):eaay3111.

    CAS  Google Scholar 

  40. Zhang W, Hu Y, Ma L, Zhu G, Wang Y, Xue X, Chen R, Yang S, Jin Z. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci. 2018;5(1):1700275.

    Google Scholar 

  41. Zhang E, Wang T, Yu K, Liu J, Chen W, Li A, Rong H, Lin R, Ji S, Zhene X, Wang Y, Zheng L, Chen C, Wang D, Zhang J, Li Y. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J Am Chem Soc. 2019;141(42):16569.

    CAS  Google Scholar 

  42. Han N, Wang Y, Yang H, Deng J, Wu J, Li Y, Li Y. Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate. Nat Commun. 2018;9:1320.

    Google Scholar 

  43. Zhang X, Sun X, Guo SX, Bond AM, Zhang J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ Sci. 2019;12(4):1334.

    CAS  Google Scholar 

  44. Lei F, Liu W, Sun Y, Xu J, Liu K, Liang L, Yao T, Pan B, Wei S, Xie Y. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun. 2016;7:12697.

    CAS  Google Scholar 

  45. Wen G, Lee DU, Ren B, Hassan FM, Jiang G, Cano ZP, Gostick J, Croiset E, Bai Z, Yang L, Chen Z. Orbital interactions in Bi–Sn bimetallic electrocatalysts for highly selective electrochemical CO2 reduction toward formate production. Adv Energy Mater. 2018;8(31):1802427.

    Google Scholar 

  46. Xing Y, Kong X, Guo X, Liu Y, Li Q, Zhang Y, Sheng Y, Yang X, Geng Z, Zeng J. Bi@Sn core–shell structure with compressive strain boosts the electroreduction of CO2 into formic acid. Adv Sci. 2020;7:1902989.

    CAS  Google Scholar 

  47. Jiang Z, Wang T, Pei J, Shang H, Zhou D, Li H, Dong J, Wang Y, Cao R, Zhuang Z, Chen W, Wang D, Zhang J, Li Y. Discovery of main group single Sb-N4 active sites for CO2 electroreduction to formate with high efficiency. Energy Environ Sci. 2020;13(9):2856.

    CAS  Google Scholar 

  48. Ma W, Xie S, Zhang XG, Sun F, Kang J, Jiang Z, Zhang Q, Wu DY, Wang Y. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat Commun. 2019;10:892.

    Google Scholar 

  49. Jiao L, Yang W, Wan G, Zhang R, Zheng X, Zhou H, Yu SH, Jiang HL. Single-atom electrocatalysts from multivariate metal–organic frameworks for highly selective reduction of CO2 at low pressures. Angew Chem Int Ed. 2020;59(46):20589.

    CAS  Google Scholar 

  50. Zhang T, Han X, Yang H, Han A, Hu E, Li Y, Yang XQ, Wang L, Liu J, Liu B. Atomically dispersed nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew Chem Int Ed. 2020;59(29):12055.

    CAS  Google Scholar 

  51. Li Z, He D, Yan X, Dai S, Younan S, Ke Z, Pan X, Xiao X, Wu H, Gu J. Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew Chem Int Ed. 2020;59(42):18572.

    CAS  Google Scholar 

  52. Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C, Xie Y. Exclusive Ni–N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J Am Chem Soc. 2017;139(42):14889.

    CAS  Google Scholar 

  53. Gong YN, Jiao L, Qian Y, Pan CY, Zheng L, Cai X, Liu B, Yu SH, Jiang HL. Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO2 reduction. Angew Chem Int Ed. 2020;59(7):2705.

    CAS  Google Scholar 

  54. Rong X, Wang HJ, Lu XL, Si R, Lu TB. Controlled synthesis of a vacancy-defect single-atom catalyst for boosting CO2 electroreduction. Angew Chem Int Ed. 2020;59(5):1961.

    CAS  Google Scholar 

  55. Geng Z, Cao Y, Chen W, Kong X, Liu Y, Yao T, Lin Y. Regulating the coordination environment of Co single atoms for achieving efficient electrocatalytic activity in CO2 reduction. Appl Catal B. 2019;240:234.

    CAS  Google Scholar 

  56. Pan Y, Lin R, Chen Y, Liu S, Zhu W, Cao X, Chen W, Wu K, Cheong WC, Wang Y, Zheng L, Luo J, Lin Y, Liu Y, Liu C, Li J, Lu Q, Chen X, Wang D, Peng Q, Chen C, Li Y. Design of single-atom Co–N5 catalytic site: a robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc. 2018;140(12):4218.

    CAS  Google Scholar 

  57. Yang H, Lin Q, Wu Y, Li G, Hu Q, Chai X, Ren X, Zhang Q, Liu J, He C. Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy. 2020;70:104454.

    CAS  Google Scholar 

  58. Zhang H, Li J, Xi S, Du Y, Hai X, Wang J, Xu H, Wu G, Zhang J, Lu J, Wang J. A graphene-supported single-atom FeN5 catalytic site for efficient electrochemical CO2 reduction. Angew Chem Int Ed. 2019;58(42):14871.

    CAS  Google Scholar 

  59. Li X, Xi S, Sun L, Dou S, Huang Z, Su T, Wang X. Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv Sci. 2020;7(17):2001545.

    CAS  Google Scholar 

  60. Mohd Adli N, Shan W, Hwang S, Samarakoon W, Karakalos S, Li Y, Cullen DA, Su D, Feng Z, Wang G, Wu G. Engineering atomically dispersed FeN4 active sites for CO2 electroreduction. Angew Chem Int Ed. 2020. https://doi.org/10.1002/anie.202012329.

    Article  Google Scholar 

  61. Gu J, Hsu CS, Bai L, Chen HM, Hu X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science. 2019;364(6445):1091.

    CAS  Google Scholar 

  62. Wang T, Sang X, Zheng W, Yang B, Yao S, Lei C, Li Z, He Q, Lu J, Lei L, Dai L, Hou Y. Gas diffusion strategy for inserting atomic iron sites into graphitized carbon supports for unusually high-efficient CO2 electroreduction and high-performance Zn–CO2 batteries. Adv Mater. 2020;32(29):2002430.

    CAS  Google Scholar 

  63. Wang X, Pan Y, Ning H, Wang H, Guo D, Wang W, Yang Z, Zhao Q, Zhang B, Zheng L, Zhang J, Wu MB. Hierarchically micro- and meso-porous Fe–N4O-doped carbon as robust electrocatalyst for CO2 reduction. Appl Catal B. 2020;266:118630.

    Google Scholar 

  64. Zhang B, Zhang J, Shi J, Tan D, Liu L, Zhang F, Lu C, Su Z, Tan X, Cheng X, Han B, Zheng L, Zhang J. Manganese acting as a high-performance heterogeneous electrocatalyst in carbon dioxide reduction. Nat Commun. 2019;10:2980.

    Google Scholar 

  65. Ikeda S, Hattori A, Maeda M, Ito K, Noda H. Electrochemical reduction behavior of carbon dioxide on sintered zinc oxide electrode in aqueous solution. Electrochemistry. 2000;68(4):257.

    CAS  Google Scholar 

  66. Jeon HS, Sinev I, Scholten F, Divins NJ, Zegkinoglou I, Pielsticker L, Roldan CB. Operando evolution of the structure and oxidation state of size-controlled Zn nanoparticles during CO2 electroreduction. J Am Chem Soc. 2018;140(30):9383.

    CAS  Google Scholar 

  67. Yang F, Song P, Liu X, Mei B, Xing W, Jiang Z, Gu L, Xu W. Highly efficient CO2 electroreduction on ZnN4-based single-atom catalyst. Angew Chem Int Ed. 2018;57(38):12303.

    CAS  Google Scholar 

  68. Wang Y, Chen Z, Han P, Du Y, Gu Z, Xu X, Zheng G. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 2018;8(8):7113.

    CAS  Google Scholar 

  69. Jeon HS, Kunze S, Scholten F, Roldan CB. Prism-shaped Cu nanocatalysts for electrochemical CO2 reduction to ethylene. ACS Catal. 2018;8(1):531.

    CAS  Google Scholar 

  70. Zhu Q, Sun X, Yang D, Ma J, Kang X, Zheng L, Zhang J, Wu Z, Han B. Carbon dioxide electroreduction to C-2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat Commun. 2019;10:3851.

    Google Scholar 

  71. Zhu Q, Yang D, Liu H, Sun X, Chen C, Bi J, Liu J, Wu H, Han B. Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction. Angew Chem Int Ed. 2020;59(23):8896.

    CAS  Google Scholar 

  72. Choi C, Kwon S, Cheng T, Xu M, Tieu P, Lee C, Cai J, Lee HM, Pan X, Duan X, Goddard WA, Huang Y. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat Catal. 2020;3(10):804.

    CAS  Google Scholar 

  73. Xu H, Rebollar D, He H, Chong L, Liu Y, Liu C, Sun CJ, Li T, Muntean JV, Winans RE, Liu DJ, Xu T. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat Energy. 2020;5(8):623.

    CAS  Google Scholar 

  74. Chiacchiarelli LM, Zhai Y, Frankel GS, Agarwal AS, Sridhar N. Cathodic degradation mechanisms of pure Sn electrocatalyst in a nitrogen atmosphere. J Appl Electrochem. 2012;42(1):21.

    CAS  Google Scholar 

  75. Lee JH, Kattel S, Jiang Z, Xie Z, Yao S, Tackett BM, Xu W, Marinkovic NS, Chen JG. Tuning the activity and selectivity of electroreduction of CO2 to synthesis gas using bimetallic catalysts. Nat Commun. 2019;10:3724.

    Google Scholar 

  76. Wang J, Kattel S, Hawxhurst CJ, Lee JH, Tackett BM, Chang K, Rui N, Liu CJ, Chen JG. Enhancing activity and reducing cost for electrochemical reduction of CO2 by supporting palladium on metal carbides. Angew Chem Int Ed. 2019;58(19):6271.

    CAS  Google Scholar 

  77. Sheng W, Kattel S, Yao S, Yan B, Liang Z, Hawxhurst CJ, Wu Q, Chen JG. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios. Energy Environ Sci. 2017;10(5):1180.

    CAS  Google Scholar 

  78. Shan W, Liu R, Zhao H, He Z, Lai Y, Li S, He G, Liu J. In situ surface-enhanced raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction. ACS Nano. 2020;14(9):11363.

    CAS  Google Scholar 

  79. Xia R, Zhang S, Ma X, Jiao F. Surface-functionalized palladium catalysts for electrochemical CO2 reduction. J Mater Chem A. 2020;8(31):15884.

    CAS  Google Scholar 

  80. Kibria MG, Edwards JP, Gabardo CM, Dinh CT, Seifitokaldani A, Sinton D, Sargent EH. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater. 2019;31(31):1807166.

    Google Scholar 

  81. Kibria MG, Edwards JP, Gabardo CM, Cao-Thang D, Seifitokaldani A, Sinton D, Sargent EH. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater. 2019;31(31):1807166.

    Google Scholar 

  82. Burdyny T, Smith WA. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ Sci. 2019;12(5):1442.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52001227 and 51972224) and the China Postdoctoral Science Foundation (No. 2019M661014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Peng Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JJ., Li, XP., Cui, BF. et al. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 40, 3019–3037 (2021). https://doi.org/10.1007/s12598-021-01736-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01736-x

Keywords

Navigation