Skip to main content

Advertisement

Log in

Electrolytic alloy-type anodes for metal-ion batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Alloy-type metals/alloys hold the promise of increasing the energy density of metal-ion batteries (MIBs) because of their theoretical high gravimetrical capacities. Semimetals and semimetal-analogs are typical alloy-type anodes. Currently, the large-scale extraction of semimetals (Si, Ge) and semimetal-analogs (Sb, Bi, Sn) by traditional metallurgical routes highly relies on using reducing agents (e.g., carbon, hydrogen, reactive metals), which consumes a large number of fossil fuels and produces greenhouse gas emissions. In addition, the common metallurgical methods for extracting semimetals involve relatively high operating temperatures and therefore produce bulk metal ingots solidified from the liquid metals. However, the commonly used electrode materials in batteries are fine powders. Thus, directly producing semimetal powders would be more energy efficient. In addition, semimetals are good candidates to host alkali/alkaline-earth ions through the alloying process because the electronegativity of semimetals is high. Therefore, preparing semimetal powders via an environment-sound manner is of great interest to provide sustainable anode materials for MIBs while reducing the ecological footprint. Low-cost and high-output capacity anode powder materials, as well as straightforward and environmental-benign synthetic methods, play key roles in enabling the energy conversion and storage technologies for real applications of MIBs. Electrochemical technologies offer new strategies to extract semimetals using electrons as the reducing agent that comes from renewable energies. Besides, the morphologies and structures of the electrolytic products can be rationally tailored by tuning the electrode potentials, electrolytes, and operating temperatures. In this regard, using the one-step green electrochemical method to prepare high-capacity and cheaper alloy-type metalloids for MIB anodes can fulfill the requirements for developing MIBs. This review critically overviews recent developments and advances in the electrochemical extraction of semimetals (Si, Ge) and semimetal-analogs (Sb, Bi, Sn) for MIBs, including basic electrochemical principles, thermodynamic analysis, manufacture strategies and applications in lithium-ion batteries (LIBs), sodium-ion batteries (SIBs), potassium-ion batteries (PIBs), magnesium-ion batteries (Mg-ion batteries), and liquid metal batteries (LMBs). It also presents challenges and prospects of employing electrochemical approaches for preparing alloy-type anode materials directly from inexpensive ore-originated feedstocks.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652.

    CAS  Google Scholar 

  2. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed. 2008;47(16):2930.

    CAS  Google Scholar 

  3. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414(6861):359.

    CAS  Google Scholar 

  4. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    CAS  Google Scholar 

  5. Liang Y, Zhao JT, Han ZJ, Wei HJ. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187.

    Google Scholar 

  6. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C. Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sour. 2014;257:421.

    CAS  Google Scholar 

  7. Loaiza LC, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small. 2020;16(5):29.

    Google Scholar 

  8. Wu MG, Xu BL, Zhang YF, Qi SH, Ni W, Hu J, Ma JM. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2020;381:17.

    Google Scholar 

  9. Grosjean C, Miranda PH, Perrin M, Poggi P. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry. Renew Sust Energy Rev. 2012;16(3):1735.

    Google Scholar 

  10. Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma XH, Ceder G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci. 2011;4(9):3680.

    CAS  Google Scholar 

  11. Kim SW, Seo DH, Ma XH, Ceder G, Kang K. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv Energy Mater. 2012;2(7):710.

    CAS  Google Scholar 

  12. Palomares V, Casas-Cabanas M, Castillo-Martinez E, Han MH, Rojo T. Update on Na-based battery materials. A growing research path. Energy Environ Sci. 2013;6(8):2312.

    CAS  Google Scholar 

  13. Pan HL, Hu YS, Chen LQ. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci. 2013;6(8):2338.

    CAS  Google Scholar 

  14. Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01443-z.

    Article  Google Scholar 

  15. Yan ZH, Yang QW, Wang QH, Ma JM. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.

    CAS  Google Scholar 

  16. Luo W, Li F, Zhang WR, Han K, Gaumet JJ, Schaefer HE, Mai LQ. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019;12(5):1025.

    CAS  Google Scholar 

  17. Saha P, Datta MK, Velikokhatnyi OI, Manivannan A, Alman D, Kumta PN. Rechargeable magnesium battery: current status and key challenges for the future. Prog Mater Sci. 2014;66:1.

    CAS  Google Scholar 

  18. Wu DX, Zhang WC, Feng YZ, Ma JM. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8(5):2618.

    CAS  Google Scholar 

  19. Jian ZL, Luo W, Ji XL. Carbon electrodes for K-ion batteries. J Am Chem Soc. 2015;137(36):11566.

    CAS  Google Scholar 

  20. Xue LG, Li YT, Gao HC, Zhou WD, Lu XJ, Kaveevivitchai W, Manthiram A, Goodenough JB. Low-cost high-energy potassium cathode. J Am Chem Soc. 2017;139(6):2164.

    CAS  Google Scholar 

  21. Li M, Lu J, Ji XL, Li YG, Shao YY, Chen ZW, Zhong C, Amine K. Design strategies for nonaqueous multivalent-ion and monovalent-ion battery anodes. Nat Rev Mater. 2019. https://doi.org/10.1038/s41578-019-0166-4.

    Article  Google Scholar 

  22. Obrovac MN. Si-alloy negative electrodes for Li-ion batteries. Curr Opin Electrochem. 2018;9:8.

    CAS  Google Scholar 

  23. Zhang QB, Chen HX, Luo LL, Zhao BT, Luo H, Han X, Wang JW, Wang CM, Yang Y, Zhu T, Liu ML. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci. 2018;11(3):669.

    CAS  Google Scholar 

  24. Liu ZM, Song T, Paik U. Sb-based electrode materials for rechargeable batteries. J Mater Chem A. 2018;6(18):8159.

    CAS  Google Scholar 

  25. Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun. 2016;52(59):9279.

    CAS  Google Scholar 

  26. Huang JQ, Lin XY, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater. 2018;8(19):7.

    Google Scholar 

  27. Singh N, Arthur TS, Ling C, Matsui M, Mizuno F. A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem Commun. 2013;49(2):149.

    CAS  Google Scholar 

  28. Tan YH, Yao WT, Zhang TW, Ma T, Lu LL, Zhou F, Yao HB, Yu SH. High voltage magnesium-ion battery enabled by nanocluster Mg3Bi2 alloy anode in noncorrosive electrolyte. ACS Nano. 2018;12(6):5856.

    CAS  Google Scholar 

  29. Malyi OI, Tan TL, Manzhos S. In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn. J Power Sour. 2013;233:341.

    CAS  Google Scholar 

  30. Arthur TS, Singh N, Matsui M. Electrodeposited Bi, Sb and Bi1−xSbx alloys as anodes for Mg-ion batteries. Electrochem Commun. 2012;16(1):103.

    CAS  Google Scholar 

  31. Wang XF, Lu XH, Liu B, Chen D, Tong YX, Shen GZ. Flexible energy-storage devices: design consideration and recent progress. Adv Mater. 2014;26(28):4763.

    CAS  Google Scholar 

  32. Zhou GM, Li F, Cheng HM. Progress in flexible lithium batteries and future prospects. Energy Environ Sci. 2014;7(4):1307.

    CAS  Google Scholar 

  33. Delmas C. Sodium and sodium-ion batteries: 50 years of research. Adv Energy Mater. 2018;8(17):9.

    Google Scholar 

  34. Xie HW, Zhao HJ, Qu JK, Song QS, Ning ZQ, Yin HY. Thermodynamic considerations of screening halide molten-salt electrolytes for electrochemical reduction of solid oxides/sulfides. J Solid State Electrochem. 2019;23(3):903.

    Google Scholar 

  35. Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature. 2000;407(6802):361.

    CAS  Google Scholar 

  36. Abdelkader AM, Kilby KT, Cox A, Fray DJ. DC voltammetry of electro-deoxidation of solid oxides. Chem Rev. 2013;113(5):2863.

    CAS  Google Scholar 

  37. Xiao W, Wang DH. The electrochemical reduction processes of solid compounds in high temperature molten salts. Chem Soc Rev. 2014;43(10):3215.

    CAS  Google Scholar 

  38. Zou X, Gu S, Lu X, Xie X, Lu C, Zhou Z, Ding W. Electroreduction of iron(III) oxide pellets to iron in alkaline media: a typical shrinking-core reaction process. Metall Mater Trans B. 2015;46(3):1262.

    CAS  Google Scholar 

  39. Qu J, Xie H, Song Q, Ning Z, Zhao H, Yin H. Electrochemical desulfurization of solid copper sulfides in strongly alkaline solutions. Electrochem Commun. 2018;92:14.

    CAS  Google Scholar 

  40. Li XY, Qu JK, Xie HW, Song QS, Fu GF, Yin HY. An electro-deoxidation approach to co-converting antimony oxide/graphene oxide to antimony/graphene composite for sodium-ion battery anode. Electrochim Acta. 2020;332:9.

    Google Scholar 

  41. Qu JK, Li XY, Xie HW, Ning ZQ, Song QS, Zhao HJ, Yin HY. Electrochemical reduction of solid lead and antimony sulfides in strong alkaline solutions. J Electrochem Soc. 2019;166(2):E62.

    CAS  Google Scholar 

  42. Yu ZL, Wang N, Fang S, Qi XP, Gao ZF, Yang JY, Lu SG. Pilot-plant production of high-performance silicon nanowires by molten salt electrolysis of silica. Ind Eng Chem Res. 2020;59(1):1.

    CAS  Google Scholar 

  43. Peng KQ, Jie JS, Zhang WJ, Lee ST. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl Phys Lett. 2008;93(3):3.

    Google Scholar 

  44. Zhang HG, Braun PV. Three-dimensional metal scaffold supported bicontinuous silicon battery anodes. Nano Lett. 2012;12(6):2778.

    CAS  Google Scholar 

  45. Liang B, Liu YP, Xu YH. Silicon-based materials as high capacity anodes for next generation lithium ion batteries. J Power Sources. 2014;267:469.

    CAS  Google Scholar 

  46. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    CAS  Google Scholar 

  47. Agrawal AK, Austin AE. Electrodeposition of silicon from solutions of silicon halides in aprotic-solvents. J Electrochem Soc. 1981;128(11):2292.

    CAS  Google Scholar 

  48. Juzeliu Nas E, Fray DJ. Silicon electrochemistry in molten salts. Chem Rev. 2020;120(3):1690.

    CAS  Google Scholar 

  49. Chen XL, Gerasopoulos K, Guo JC, Brown A, Wang CS, Ghodssi R, Culver JN. A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv Funct Mater. 2011;21(2):380.

    CAS  Google Scholar 

  50. Kim DY, Suk J, Kim DW, Kang Y, Im SH, Yang Y, Park OO. An electrochemically grown three-dimensional porous Si@Ni inverse opal structure for high-performance Li ion battery anodes. J Mater Chem A. 2014;2(18):6396.

    CAS  Google Scholar 

  51. Qian X, Hang T, Nara H, Yokoshima T, Li M, Osaka T. Electrodeposited three-dimensional porous Si–O–C/Ni thick film as high performance anode for lithium-ion batteries. J Power Sour. 2014;272:794.

    CAS  Google Scholar 

  52. Li WT, Guo XW, Lu Y, Wang L, Fan AL, Sui ML, Yu HJ. Amorphous nanosized silicon with hierarchically porous structure for high-performance lithium ion batteries. Energy Storage Mater. 2017;7:203.

    Google Scholar 

  53. Vlaic CA, Ivanov S, Peipmann R, Eisenhardt A, Himmerlich M, Krischok S, Bund A. Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid. Electrochim Acta. 2015;168:403.

    CAS  Google Scholar 

  54. Ahn S, Jeong M, Yokoshima T, Nara H, Momma T, Osaka T. Electrophoretically deposited carbon nanotube anchor layer to improve areal capacity of Si–O–C composite anode for lithium secondary batteries. J Power Sour. 2016;336:203.

    CAS  Google Scholar 

  55. Jeong M, Ahn S, Yokoshima T, Nara H, Momma T, Osaka T. New approach for enhancing electrical conductivity of electrodeposited Si-based anode material for Li secondary batteries: self-incorporation of nano Cu metal in Si–O–C composite. Nano Energy. 2016;28:51.

    CAS  Google Scholar 

  56. Ahn S, Kadoya T, Nara H, Yokoshima T, Momma T, Osaka T. Tin addition for mechanical and electronic improvement of electrodeposited Si–O–C composite anode for lithium-ion battery. J Power Sour. 2019;437:6.

    Google Scholar 

  57. Jiang T, Xu X, Chen GZ. Silicon prepared by electro-reduction in molten salts as new energy materials. J Energy Chem. 2020;47:46.

    Google Scholar 

  58. Fray D. Molten salts and energy related materials. Faraday Discuss. 2016;190:11.

    CAS  Google Scholar 

  59. Nohira T, Yasuda K, Ito Y. Pinpoint and bulk electrochemical reduction of insulating silicon dioxide to silicon. Nat Mater. 2003;2(6):397.

    CAS  Google Scholar 

  60. Dong Y, Slade T, Stolt MJ, Li L, Girard SN, Mai L, Jin S. Low-temperature molten-salt production of silicon nanowires by the electrochemical reduction of CaSiO3. Angew Chem Int Ed. 2017;56(46):14453.

    CAS  Google Scholar 

  61. Weng W, Xiao W. Electrodeposited silicon nanowires from silica dissolved in molten salts as a binder-free anode for lithium-ion batteries. ACS Appl Energy Mater. 2018;2(1):804.

    Google Scholar 

  62. Yuan YT, Xiao W, Wang ZY, Fray DJ, Jin XB. Efficient nanostructuring of silicon by electrochemical alloying/dealloying in molten salts for improved lithium storage. Angew Chem Int Ed. 2018;57(48):15743.

    CAS  Google Scholar 

  63. Zhao Z, Xie H, Qu J, Zhao H, Ma Q, Xing P, Song Q, Wang D, Yin H. A natural transporter of silicon and carbon: conversion of rice husks to silicon carbide or carbon-silicon hybrid for lithium-ion battery anodes via a molten salt electrolysis approach. Batter Supercaps. 2019;2(12):1007.

    CAS  Google Scholar 

  64. Sri Maha Vishnu D, Sure J, Kim HK, Kumar RV, Schwandt C. Solid state electrochemically synthesised β-SiC nanowires as the anode material in lithium ion batteries. Energy Storage Mater. 2020;26:234.

    Google Scholar 

  65. Zhang J, Fang S, Qi XP, Yu ZL, Wu ZH, Yang JY, Lu SG. Preparation of high-purity straight silicon nanowires by molten salt electrolysis. J Energy Chem. 2020;40:171.

    Google Scholar 

  66. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):18.

    Google Scholar 

  67. Songster J, Pelton AD. The Na–Si (sodium–silicon) system. J Phase Equilib. 1992;13(1):67.

    Google Scholar 

  68. Lim CH, Huang TY, Shao PS, Chien JH, Weng YT, Huang HF, Hwang BJ, Wu NL. Experimental study on sodiation of amorphous silicon for use as sodium-ion battery anode. Electrochim Acta. 2016;211:265.

    CAS  Google Scholar 

  69. Jangid MK, Lakhnot AS, Vemulapally A, Sonia FJ, Sinha S, Dusane RO, Mukhopadhyay A. Crystalline core/amorphous shell structured silicon nanowires offer size and structure dependent reversible Na-storage. J Mater Chem A. 2018;6(8):3422.

    CAS  Google Scholar 

  70. Han Y, Lin N, Xu TJ, Li TQ, Tian J, Zhu YC, Qian YT. An amorphous Si material with a sponge-like structure as an anode for Li-ion and Na-ion batteries. Nanoscale. 2018;10(7):3153.

    CAS  Google Scholar 

  71. Yasuda K, Nohira T, Ogata YH, Ito Y. Direct electrolytic reduction of solid silicon dioxide in molten LiCl–KCl–CaCl2 at 773 K. J Electrochem Soc. 2005;152(11):D208.

    Google Scholar 

  72. Kim MH, Kim YJ, Kim JY, Lee YK, Ascencio JA, Park JW. Electrochemical characteristics of Si/Mo multilayer anode for Li ion batteries. Rev Mex Fis. 2007;53(1):17.

    CAS  Google Scholar 

  73. Yoon S, Park CM, Sohn HJ. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem Solid State Lett. 2008;11(4):A42.

    CAS  Google Scholar 

  74. Liu X, Zhao JP, Hao J, Su BL, Li Y. 3D ordered macroporous germanium fabricated by electrodeposition from an ionic liquid and its lithium storage properties. J Mater Chem A. 2013;1(47):150781.

    Google Scholar 

  75. Liu XS, Hao J, Liu XX, Chi CX, Li N, Endres F, Zhang Y, Li Y, Zhao JP. Preparation of Ge nanotube arrays from an ionic liquid for lithium ion battery anodes with improved cycling stability. Chem Commun. 2015;51(11):2064.

    CAS  Google Scholar 

  76. Hao J, Li N, Ma XX, Liu XX, Liu XS, Li Y, Xu HB, Zhao JP. Ionic liquid electrodeposition of germanium/carbon nanotube composite anode material for lithium ion batteries. Mater Lett. 2015;144:50.

    CAS  Google Scholar 

  77. Chi C, Hao J, Liu X, Ma X, Yang Y, Liu X, Endres F, Zhao J, Li Y. UV-assisted, template-free electrodeposition of germanium nanowire cluster arrays from an ionic liquid for anodes in lithium-ion batteries. New J Chem. 2017;41(24):15210.

    CAS  Google Scholar 

  78. Kim SW, Ngo DT, Heo J, Park CN, Park CJ. Electrodeposited germanium/carbon composite as an anode material for lithium ion batteries. Electrochim Acta. 2017;238:319.

    CAS  Google Scholar 

  79. Saverina EA, Sivasankaran V, Kapaev RR, Galushko AS, Ananikov VP, Egorov MP, Jouikov VV, Troshin PA, Syroeshkin MA. An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. Green Chem. 2020;22(2):359.

    CAS  Google Scholar 

  80. Yin HY, Xiao W, Mao XH, Wei WF, Zhu H, Wang DH. Template-free electrosynthesis of crystalline germanium nanowires from solid germanium oxide in molten CaCl2–NaCl. Electrochim Acta. 2013;102:369.

    CAS  Google Scholar 

  81. Xiao W, Zhou J, Yu L, Wang DH, Lou XW. Electrolytic formation of crystalline silicon/germanium alloy nanotubes and hollow particles with enhanced lithium-storage properties. Angew Chem Int Ed. 2016;55(26):7427.

    CAS  Google Scholar 

  82. Weng W, Jiang B, Wang Z, Xiao W. In situ electrochemical conversion of CO2 in molten salts to advanced energy materials with reduced carbon emissions. Sci Adv. 2020;6(9):eaay9278.

    CAS  Google Scholar 

  83. Chou C-Y, Lee M, Hwang GS. A comparative first-principles study on sodiation of silicon, germanium, and tin for sodium-ion batteries. J Phys Chem C. 2015;119(27):14843.

    CAS  Google Scholar 

  84. Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun. 2019;101:68.

    CAS  Google Scholar 

  85. Legrain F, Malyi OI, Manzhos S. Comparative computational study of the diffusion of Li, Na, and Mg in silicon including the effect of vibrations. Solid State Ion. 2013;253:157.

    CAS  Google Scholar 

  86. Baggetto L, Keum JK, Browning JF, Veith GM. Germanium as negative electrode material for sodium-ion batteries. Electrochem Commun. 2013;34:41.

    CAS  Google Scholar 

  87. Wu H, Liu WJ, Zheng LH, Zhu DF, Du N, Xiao CM, Su LW, Wang LB. Facile synthesis of amorphous Ge supported by Ni nanopyramid arrays as an anode material for sodium-ion batteries. ChemistryOpen. 2019;8(3):298.

    CAS  Google Scholar 

  88. Arroyo-de Dompablo ME, Ponrouch A, Johansson P, Palacin MR. Achievements, challenges, and prospects of calcium batteries. Chem Rev. 2019. https://doi.org/10.1021/acs.chemrev.9b00339.

    Article  Google Scholar 

  89. Yin H, Wang D. Electrolytic germanium for calcium storage. J Electrochem Soc. 2016;163(13):E351.

    CAS  Google Scholar 

  90. Darwiche A, Marino C, Sougrati MT, Fraisse B, Stievano L, Monconduit L. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. J Am Chem Soc. 2012;134(51):20805.

    CAS  Google Scholar 

  91. Yang YL, Li D, Zhang JQ, Suo GQ, Yu QY, Feng L, Hou XJ, Ye XH, Zhang L, Wang W. Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater Lett. 2019;256:4.

    Google Scholar 

  92. Lahiri A, Endres F. Review-electrodeposition of nanostructured materials from aqueous, organic and ionic liquid electrolytes for Li-ion and Na-ion batteries: a comparative review. J Electrochem Soc. 2017;164(9):D597.

    CAS  Google Scholar 

  93. Lao MM, Zhang Y, Luo WB, Yan QY, Sun WP, Dou SX. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater. 2017;29(48):23.

    Google Scholar 

  94. Bryngelsson H, Eskhult J, Nyholm L, Herranen M, Alm O, Edstrom K. Electrodeposited Sb and Sb/Sb2O3 nanoparticle coatings as anode materials for Li-ion batteries. Chem Mater. 2007;19(5):1170.

    CAS  Google Scholar 

  95. Bryngelsson H, Eskhult J, Nyholm L, Edstrom K. Thin films of Cu2Sb and Cu9Sb2 as anode materials in Li-ion batteries. Electrochim Acta. 2008;53(24):7226.

    CAS  Google Scholar 

  96. Yang YW, Chen YB, Liu F, Chen XY, Wu YC. Template-based fabrication and electrochemical performance of CoSb nanowire arrays. Electrochim Acta. 2011;56(18):6420.

    CAS  Google Scholar 

  97. Yang YW, Li TY, Liu F, Zhu WB, Li XL, Wu YC, Kong MG. Electrodeposition of Ni5Sb2 nanowires array and its application as a high-performance anode material for lithium ion batteries. Microelectron Eng. 2013;104:1.

    CAS  Google Scholar 

  98. Al-Salman R, Sedlmaier SJ, Sommer H, Brezesinski T, Janek J. Facile synthesis of micrometer-long antimony nanowires by template-free electrodeposition for next generation Li-ion batteries. J Mater Chem A. 2016;4(33):12726.

    CAS  Google Scholar 

  99. Zheng XM, Rong WQ, You JH, Tu GP, Zhang PY, Tao S, Wang YX, Huang L, Li JT. An electrodeposition strategy for the controllable and cost-effective fabrication of Sb–Fe–P anodes for Li ion batteries. Electrochim Acta. 2019;309:469.

    CAS  Google Scholar 

  100. Nam DH, Hong KS, Lim SJ, Kwon HS. Electrochemical synthesis of a three-dimensional porous Sb/Cu2Sb anode for Na-ion batteries. J Power Sour. 2014;247:423.

    CAS  Google Scholar 

  101. Nam DH, Hong KS, Lim SJ, Kim MJ, Kwon HS. High-performance Sb/Sb2O3 anode materials using a polypyrrole nanowire network for Na-ion batteries. Small. 2015;11(24):2885.

    CAS  Google Scholar 

  102. Liang LY, Xu Y, Li YL, Dong HS, Zhou M, Zhao HP, Kaiser U, Lei Y. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. J Mater Chem A. 2017;5(4):1749.

    CAS  Google Scholar 

  103. Li XY, Sun ML, Ni JF, Li L. Template-free construction of self-supported Sb prisms with stable sodium storage. Adv Energy Mater. 2019;9(24):7.

    CAS  Google Scholar 

  104. Schulze MC, Belson RM, Kraynak LA, Prieto AL. Electrodeposition of Sb/CNT composite films as anodes for Li- and Na-ion batteries. Energy Storage Mater. 2020;25:572.

    Google Scholar 

  105. Tian Y, An YL, Xiong SL, Feng JK, Qian YT. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(16):9716.

    CAS  Google Scholar 

  106. Jin Y, Liu K, Lang JL, Zhuo D, Huang ZY, Wang CA, Wu H, Cui Y. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage. Nat Energy. 2018;3(9):732.

    CAS  Google Scholar 

  107. Kim H, Boysen DA, Newhouse JM, Spatocco BL, Chung B, Burke PJ, Bradwell DJ, Jiang K, Tomaszowska AA, Wang KL, Wei WF, Ortiz LA, Barriga SA, Poizeau SM, Sadoway DR. Liquid metal batteries: past, present, and future. Chem Rev. 2013;113(3):2075.

    CAS  Google Scholar 

  108. Yin HY, Chung B, Chen F, Ouchi T, Zhao J, Tanaka N, Sadoway DR. Faradaically selective membrane for liquid metal displacement batteries. Nat Energy. 2018;3(2):127.

    CAS  Google Scholar 

  109. Wang KL, Jiang K, Chung B, Ouchi T, Burke PJ, Boysen DA, Bradwell DJ, Kim H, Muecke U, Sadoway DR. Lithium-antimony-lead liquid metal battery for grid-level energy storage. Nature. 2014;514(7522):348.

    CAS  Google Scholar 

  110. Bradwell DJ, Kim H, Sirk AHC, Sadoway DR. Magnesium-antimony liquid metal battery for stationary energy storage. J Am Chem Soc. 2012;134(4):1895.

    CAS  Google Scholar 

  111. Lu XC, Li GS, Kim JY, Mei DH, Lemmon JP, Sprenkle VL, Liu J. Liquid-metal electrode to enable ultra-low temperature sodium-beta alumina batteries for renewable energy storage. Nat Commun. 2014;5:8.

    Google Scholar 

  112. Ouchi T, Kim H, Spatocco BL, Sadoway DR. Calcium-based multi-element chemistry for grid-scale electrochemical energy storage. Nat Commun. 2016;7:5.

    Google Scholar 

  113. Yin H, Chung B, Sadoway DR. Electrolysis of a molten semiconductor. Nat Commun. 2016;7:12584.

    CAS  Google Scholar 

  114. Li Z, Ding J, Mitlin D. Tin and tin compounds for sodium ion battery anodes: phase transformations and performance. Acc Chem Res. 2015;48(6):1657.

    CAS  Google Scholar 

  115. Ying HJ, Han WQ. Metallic Sn-based anode materials: application in high-performance lithium-ion and sodium-ion batteries. Adv Sci. 2017;4(11):21.

    Google Scholar 

  116. Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.

    CAS  Google Scholar 

  117. Morimoto H, Tobishima SI, Negishi H. Anode behavior of electroplated rough surface Sn thin films for lithium-ion batteries. J Power Sour. 2005;146(1–2):469.

    CAS  Google Scholar 

  118. Lee JH, Kong BS, Yang SB, Jung HT. Fabrication of single-walled carbon nanotube/tin nanoparticle composites by electrochemical reduction combined with vacuum filtration and hybrid co-filtration for high-performance lithium battery electrodes. J Power Sour. 2009;194(1):520.

    CAS  Google Scholar 

  119. Gu CD, Zhang H, Wang XL, Tu JP. One-pot synthesis of SnO2/reduced graphene oxide nanocomposite in ionic liquid-based solution and its application for lithium ion batteries. Mater Res Bull. 2013;48(10):4112.

    CAS  Google Scholar 

  120. Elbasiony AMR, El Abedin SZ, Endres F. Electrochemical synthesis of freestanding tin nanowires from ionic liquids. J Solid State Electrochem. 2014;18(4):951.

    CAS  Google Scholar 

  121. Lahiri A, Pulletikurthi G, El Abedin SZ, Endres F. Electrodeposition of Ge, Sn and GexSn1−x from two different room temperature ionic liquids. J Solid State Electrochem. 2015;19(3):7853.

    Google Scholar 

  122. Kim M, Choi I, Kim JJ. Facile electrochemical synthesis of heterostructured amorphous-Sn@CuxO nanowire anode for Li-ion batteries with high stability and rate-performance. Appl Surf Sci. 2019;479:2253.

    Google Scholar 

  123. Gupta RD, Schwandt C, Fray DJ. Molten salt electrolytically produced carbon/tin nanomaterial as the anode in a lithium ion battery. Metall Mater Trans E Mater Energy Syst. 2017;4(1):22.

    Google Scholar 

  124. Nam DH, Hong KS, Lim SJ, Kim TH, Kwon HS. Electrochemical properties of electrodeposited Sn anodes for Na-ion batteries. J Phys Chem C. 2014;118(35):20086.

    CAS  Google Scholar 

  125. Ma J, Prieto AL. Electrodeposition of pure phase SnSb exhibiting high stability as a sodium-ion battery anode. Chem Commun. 2019;55(48):6938.

    CAS  Google Scholar 

  126. DiLeo RA, Zhang Q, Marschilok AC, Takeuchi KJ, Takeuchi ES. Composite anodes for secondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates. ECS Electrochem Lett. 2014;4(1):A10.

    Google Scholar 

  127. Shao YY, Gu M, Li XL, Nie ZM, Zuo PJ, Li GS, Liu TB, Xiao J, Cheng YW, Wang CM, Zhang JG, Liu J. Highly reversible Mg insertion in nanostructured Bi for Mg ion batteries. Nano Lett. 2014;14(1):255.

    CAS  Google Scholar 

  128. Finke A, Poizot P, Guery C, Dupont L, Taberna PL, Simon P, Tarascon JM. Electrochemical method for direct deposition of nanometric bismuth and its electrochemical properties vs Li. Electrochem Solid State Lett. 2008;11(3):E5.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51704060), the Fundamental Research Funds for the Central Universities (No. N172505002), and the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities (No. B16009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua-Yi Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Qu, JK. & Yin, HY. Electrolytic alloy-type anodes for metal-ion batteries. Rare Met. 40, 329–352 (2021). https://doi.org/10.1007/s12598-020-01537-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01537-8

Keywords

Navigation