Skip to main content
Log in

Microalloying Al alloys with Sc: a review

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a kind of important light alloys, the Al alloys exhibit mechanical properties that are closely related to the microstructures. Changing the main alloying elements and adjusting heat treatments are usually approaches to tune the microstructure and hence artificially control the mechanical properties. However, the windows for the two approaches have become quite narrow, after extensive studies in the last half of century. Microalloying has become the most promising strategy to further modify the microstructure and improve the mechanical properties of Al alloys, among which the element of scandium (Sc) is especially powerful. In this paper, the recent progresses in Al alloys microalloyed with Sc are briefly reviewed, focusing on the microstructural characterization, strengthening response, and underlying mechanisms. The possible key research points are also proposed for the further development of Al alloys microalloyed with Sc and other rare earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright Elsevier Ltd. All rights reserved

Fig. 2

Copyright Elsevier Ltd. All rights reserved

Fig. 3

Copyright Springer. All rights reserved

Fig. 4

Copyright Elsevier Ltd. All rights reserved

Fig. 5

Copyright Springer. All rights reserved

Fig. 6

Copyright Elsevier Ltd. All rights reserved

Fig. 7

Copyright Elsevier Ltd. All rights reserved

Fig. 8

Copyright Elsevier Ltd. All rights reserved

Fig. 9

Copyright Elsevier Ltd. All rights reserved

Fig. 10

Copyright Elsevier Ltd. All rights reserved

Similar content being viewed by others

References

  1. Hornbogen E, Starke EA Jr. Theory assisted design of high strength low alloy aluminum. Acta Metall Mater. 1993;41(1):1.

    Article  CAS  Google Scholar 

  2. Wen K, Xiong BQ, Fan YQ, Zhang YA, Li ZH, Li XW, Wang F, Liu HW. Transformation and dissolution of second phases during solution treatment of an Al–Zn–Mg–Cu alloy containing high zinc. Rare Met. 2018;37(5):376.

    Article  CAS  Google Scholar 

  3. Huang HL, Jia ZH, Xing Y, Wang XL, Liu Q. Microstructure of Al–Si–Mg alloy with Zr/Hf additions during solidification and solution treatment. Rare Met. 2019;38(11):1033.

    Article  CAS  Google Scholar 

  4. Liu G, Zhang GJ, Ding XD, Sun J, Chen KH. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates. Mater Sci Eng A. 2003;344:113.

    Article  Google Scholar 

  5. Liu G, Sun J, Nan CW, Chen KH. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Mater. 2005;53(12):3459.

    Article  CAS  Google Scholar 

  6. Grong Ø, Shercliff HR. Microstructural modelling in metals processing. Prog Mater Sci. 2002;47(1):163.

    Article  CAS  Google Scholar 

  7. Deschamps A, Livet F, Bréchet Y. Influence of pre-deformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 1998;47(1):281.

    Article  Google Scholar 

  8. Starink JM, Wang SC. A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 2003;51(17):5131.

    Article  CAS  Google Scholar 

  9. Myhr OR, Grong Ø, Andersen SJ. Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 2001;49(1):65.

    Article  CAS  Google Scholar 

  10. Hardy H. The ageing characteristics of ternary aluminium–copper alloys with cadmium indium or tin. J Inst Met. 1952;80(2):483.

    CAS  Google Scholar 

  11. Silcock JM, Heal TJ, Hardy HK. The structural ageing characteristics of ternary aluminium–copper alloys with cadmium, indium, or tin. J Inst Met. 1955;84(1):23.

    CAS  Google Scholar 

  12. Boyd JD, Nicholson RB. A calorimetric determination of precipitate interfacial energies in two Al–Cu alloys. Acta Metall. 1971;19(3):1101.

    Article  CAS  Google Scholar 

  13. Sankaran R, Laird C. Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of θ′ plates in Al–Cu alloy. Mater Sci Eng. 1974;14(1):271.

    Article  CAS  Google Scholar 

  14. Kanno M, Suzuki H, Kanoh O. The precipitation of theta-prime phase in an Al–4%Cu–0.06%In alloy. J Jpn Inst Met. 1980;44(3):1139.

    Article  CAS  Google Scholar 

  15. Nuyten JBM. Quenched structures and precipitation in Al–Cu alloys with and without trace additions of Cd. Acta Metall. 1967;15(4):1765.

    Article  CAS  Google Scholar 

  16. Ringer SP, Hono K, Sakurai T. The effect of trace additions of Sn on precipitation in Al–Cu alloys: an atom probe field ion microscopy study. Metall Mater Trans A. 1995;26(5):2207.

    Article  Google Scholar 

  17. Mitlin D, Morris JW, Radmilovic V, Dahmen U. Precipitation and aging in Al–Si–Ge–Cu. Metall Mater Trans A. 2001;32(1):197.

    Article  Google Scholar 

  18. Mitlin D, Radmilovic V, Morris JW, Dahmen U. On the influence of Si–Ge additions on the aging response of Al–Cu. Metall Mater Trans A. 2003;34(2):735.

    Google Scholar 

  19. Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Z Fuer Metallk. 2006;97(3):246.

    Article  CAS  Google Scholar 

  20. Ringer SP, Hono K. Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Mater Charact. 2000;44(1):101.

    Article  CAS  Google Scholar 

  21. Clouet E, Lae L, Epicier T, Lefebvre W, Nastar M, Deschamps A. Complex precipitation pathways in multicomponent alloys. Nat Mater. 2006;5(2):482.

    Article  CAS  Google Scholar 

  22. Fazeli F, Poole WJ, Sinclair CW. Modeling the effect of Al3Sc precipitates on the yield stress and work hardening of Al–Mg–Sc alloy. Acta Mater. 2008;56(7):1909.

    Article  CAS  Google Scholar 

  23. Robson JD. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater. 2004;52(6):1409.

    Article  CAS  Google Scholar 

  24. Liu G, Zhang GJ, Wang RH, Hu W, Sun J, Chen KH. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys. Acta Mater. 2007;55(1):273.

    Article  CAS  Google Scholar 

  25. Hahn GT, Rosenfield AR. Metallurgical factors affecting fracture toughness of aluminum alloys. Metall Trans A. 1975;6(2):653.

    Article  Google Scholar 

  26. Røyset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev. 2005;50(1):19.

    Article  CAS  Google Scholar 

  27. Drits ME, Pavlenko SG, Toropova LS, Bykov YG, Ber LB. Mechanism of the influence of scandium in increasing the strength and thermal stability of alloys of the Al–Mg system. Soviet Phys Dok. 1981;26(3):344.

    Google Scholar 

  28. Jones MJ, Humphreys FJ. Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium. Acta Mater. 2003;51(15):2149.

    Article  CAS  Google Scholar 

  29. Marquis EA, Seidman DN. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater. 2001;49(7):1909.

    Article  CAS  Google Scholar 

  30. Seidman DN, Marquis EA, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater. 2002;50(18):4021.

    Article  CAS  Google Scholar 

  31. Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater. 2003;51(19):4803.

    Article  CAS  Google Scholar 

  32. Iwamura S, Miura Y. Loss in coherency and coarsening behavior of Al3Sc precipitates. Acta Mater. 2004;52(3):591.

    Article  CAS  Google Scholar 

  33. Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at%) alloys during isochronal aging. Acta Mater. 2010;58(20):5184.

    Article  CAS  Google Scholar 

  34. Zhang CM, Jiang Y, Cao FH, Hu T, Wang YR, Yin DF. Formation of coherent, core-shelled nano-particles in dilute Al–Sc–Zr alloys from the first-principles. J Mater Sci Technol. 2018;35(5):930.

    Article  Google Scholar 

  35. Liu L, Jiang JT, Zhang B, Shao WZ, Zhen L. Enhancement of strength and electrical conductivity for a dilute Al–Sc–Zr alloy via heat treatments and cold drawing. J Mater Sci Technol. 2018;35(6):962.

    Article  Google Scholar 

  36. Sun SP, Li XP, Yang J, Wang HJ, Jiang Y, Yi DQ. Point defect concentrations of L12–Al3X(Sc, Zr, Er). Rare Met. 2018;37(8):699.

    Article  CAS  Google Scholar 

  37. van Dalen ME, Seidman DN, Dunand DC. Creep- and coarsening properties of Al–0.06 at% Sc–0.06 at% Ti at 300–450 °C. Acta Mater. 2008;56(15):4369.

    Article  CAS  Google Scholar 

  38. Luca AD, Seidman DN, Dunand DC. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al–Zr–Sc–Er–Si alloys. Acta Mater. 2019;165:1.

    Article  CAS  Google Scholar 

  39. Harada Y, Dunand D. Microstructure of Al3Sc with ternary rare-earth additions. Intermetallics. 2009;17(1):17.

    Article  CAS  Google Scholar 

  40. Karnesky RA, Seidman DN, Dunand DC. Creep of Al-Sc microalloys with rare-earth element additions. Mater Sci Forum. 2006;519–521:1035.

    Article  Google Scholar 

  41. Karnesky RA, Dunand DC, Seidman DN. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Mater. 2009;57(11):4022.

    Article  CAS  Google Scholar 

  42. Radmilovic V, Ophus C, Marquis EA, Rossell MD, Tolley A, Gautam A, Asta M, Dahmen U. Highly monodisperse core–shell particles created by solid-state reactions. Nat Mater. 2011;10(3):710.

    Article  CAS  Google Scholar 

  43. Du G, Deng JW, Wang YL, Yan DS, Rong LJ. Precipitation of (Al, Si)3Sc in an Al–Sc–Si alloy. Scr Mater. 2009;61(3):532.

    Article  CAS  Google Scholar 

  44. Dorin T, Ramajayam M, Babaniaris S, Langan TJ. Micro-segregation and precipitates in as-solidified Al–Sc–Zr–(Mg)–(Si)–(Cu) alloys. Mater Charact. 2019;154:353.

    Article  CAS  Google Scholar 

  45. Wang ZP, Fang QH, Fan TW, Chen DC, Liu B, Liu F, Ma L, Tang PY. Effects of solute atoms on 9R phase stabilization in high-performance Al alloys: a first-principles study. JOM. 2019;71(6):2041.

    Google Scholar 

  46. Dan CY, Chen Z, Ji G, Zhong SY, Li J, Li XR, Brisset F, Sun GA, Wang HW, Ji V. Cube orientation bands observed in largely deformed Al–Sc alloys containing shearable precipitates. Scr Mater. 2019;166:139.

    Article  CAS  Google Scholar 

  47. Chen D, Xia CJ, Liu XM, Wu Y, Wang ML. The effect of alloying elements on the structural stability, and mechanical and electronic properties of Al3Sc: a first-principles study. Materials. 2019;12(9):1539.

    Article  CAS  Google Scholar 

  48. Lin JD, Seidman DN, Dunand DC. Improving coarsening resistance of dilute Al–Sc–Zr–Si alloys with Sr or Zn additions. Mater Sci Eng A. 2019;754:447.

    Article  CAS  Google Scholar 

  49. Sun J, Wang XQ, Guo LJ, Zhang XB, Wang HW. Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents. J Mater Res. 2019;34(7):1258.

    Article  CAS  Google Scholar 

  50. Beeri O, Baik SI, Bram AI, Shandalov M, Seidman DN, Dunand DC. Effect of U and Th trace additions on the precipitation strengthening of Al–0.09Sc (at%) alloy. J Mater Sci. 2019;54(5):3485.

    Article  CAS  Google Scholar 

  51. Okle P, Lin JD, Zhu TY, Dunand DC, Seidman DN. Effect of micro-additions of Ge, In or Sn on precipitation in dilute Al–Sc–Zr alloys. Mater Sci Eng A. 2019;739:427.

    Article  CAS  Google Scholar 

  52. Wen SP, Gao KY, Huang H, Wang W, Nie ZR. Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature. J Alloys Compd. 2013;574:92.

    Article  CAS  Google Scholar 

  53. Wen SP, Gao KY, Li Y, Huang H, Nie ZR. Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scr Mater. 2011;65(3):592.

    Article  CAS  Google Scholar 

  54. Wu H, Wen SP, Wu XL, Gao KY, Huang H, Wang W, Nie ZR. A study of precipitation strengthening and recrystallization behavior in dilute Al–Er–Hf–Zr alloys. Mater Sci Eng A. 2015;639:307.

    Article  CAS  Google Scholar 

  55. Wen SP, Xing ZB, Huang H, Li BL, Wang Z, Nie ZR. The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy. Mater Sci Eng A. 2009;516:42.

    Article  CAS  Google Scholar 

  56. Zhang YZ, Gu J, Tian Y, Gao HY, Wang J, Sun BD. Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys. Mater Sci Eng A. 2014;616:132.

    Article  CAS  Google Scholar 

  57. Marquis EA, Seidman DN, Asta M, Woodward C. Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater. 2006;54(1):119.

    Article  CAS  Google Scholar 

  58. Marquis EA, Seidman DN, Asta M, Woodward C, Ozoliņš V. Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. Phys Rev Lett. 2003;91(23):036101.

    Article  CAS  Google Scholar 

  59. Feng L, Li JG, Mao YZ. Strengthening and toughening mechanism of high-Mg low-Sc Al–Mg–Sc–Zr alloy. Rare Met Mater Eng. 2019;48(9):2857.

    Google Scholar 

  60. Tang L, Peng XY, Huang JW, Ma AB, Deng Y, Xu GF. Microstructure and mechanical properties of severely deformed Al–Mg–Sc–Zr alloy and their evolution during annealing. Mater Sci Eng A. 2019;754:295.

    Article  CAS  Google Scholar 

  61. Li RD, Chen H, Chen C, Zhu HB, Wang MB, Yuan TC, Song B. Selective laser melting of gas atomized Al–3.02Mg–0.2Sc–0.1Zr alloy powder: microstructure and mechanical properties. Adv Eng Mater. 2019;21(3):1800650.

    Article  CAS  Google Scholar 

  62. Luo XE, Fang HJ, Liu H, Yan Y, Zhu HL, Yu K. Effect of Sc and Zr on Al–6(Mn, Fe) Phase in Al–Mg–Mn Alloys. Mater Trans. 2019;60(5):737.

    Article  CAS  Google Scholar 

  63. Chanyathunyaroj K, Patakham U, Kou S, Limmaneevichitr C. Mechanical properties of squeeze-cast Al–7Si–0.3Mg alloys with Sc-modified Fe-rich intermetallic compounds. Rare Met. 2018;37(9):769.

    Article  CAS  Google Scholar 

  64. Lu Z, Zhang LJ, Wang J, Yao QL, Rao GH, Zhou HY. Understanding of strengthening and toughening mechanisms for Sc-modified Al–Si–(Mg) series casting alloys designed by computational thermodynamics. J Alloys Compd. 2019;805:415.

    Article  CAS  Google Scholar 

  65. Kobayashi KF, Hogan LM. The crystal growth of silicon in Al–Si alloys. J Mater Sci. 1985;20(4):1961.

    Article  CAS  Google Scholar 

  66. Mao GL, Yan H, Zhu CC, Wu Z, Gao WL. The varied mechanisms of yttrium (Y) modifying a hypoeutectic Al–Si alloy under conditions of different cooling rates. J Alloys Compd. 2019;806:909.

    Article  CAS  Google Scholar 

  67. Yu SS, Wang RC, Peng CQ, Cai ZY, Wu X, Feng Y, Wang XF. Effect of minor scandium addition on the microstructure and properties of Al–50Si alloys for electronic packaging. J Mater Sci Mater Electron. 2019;30:20770–7.

    Article  CAS  Google Scholar 

  68. Chen Y, Liu CY, Ma ZY, Huang HF, Peng YH, Hou YF. Effect of Sc addition on the microstructure, mechanical properties, and damping capacity of Al–20Zn alloy. Mater Charact. 2019;157:109892.

    Article  CAS  Google Scholar 

  69. Jia QB, Rometsch P, Kurnsteiner P, Chao Q, Huang AJ, Weyland M, Bourgeois L, Wu XH. Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 2019;171:108.

    Article  CAS  Google Scholar 

  70. Suwanpreecha C, Pandee P, Patakham U, Limmaneevichitr C. New generation of eutectic Al–Ni casting alloys for elevated temperature services. Mater Sci Eng A. 2018;709:46.

    Article  CAS  Google Scholar 

  71. Belov NA, Alabin AN, Eskin DG. Improving the properties of cold-rolled Al–6%Ni sheets by alloying and heat treatment. Scr Mater. 2004;50(1):89.

    Article  CAS  Google Scholar 

  72. Nakagawa YG, Weatherly GC. The thermal stability of the rod Al3Ni–Al eutectic. Acta Metall. 1972;20(3):345.

    Article  CAS  Google Scholar 

  73. Fan Y, Makhlouf M. The Al–Al3Ni eutectic reaction: crystallography and mechanism of formation. Metall Mater Trans. 2015;46(9):3808.

    Article  CAS  Google Scholar 

  74. Suwanpreecha C, Toinin JP, Michi RA, Pandee P, Dunand DC, Limmaneevichitr C. Strengthening mechanisms in Al–Ni–Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates. Acta Mater. 2019;164:334.

    Article  CAS  Google Scholar 

  75. Chen BA, Pan L, Wang RH, Liu G, Cheng PM, Xiao L, Sun J. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition. Mater Sci Eng A. 2011;530:607.

    Article  CAS  Google Scholar 

  76. Jiang L, Li JK, Liu G, Wang RH, Chen BA, Zhang JY, Sun J, Yang MX, Yang G, Yang J, Cao XZ. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition. Mater Sci Eng A. 2015;637:139.

    Article  CAS  Google Scholar 

  77. Gao YH, Kuang J, Liu G, Sun J. Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al–Cu alloys during homogenization treatment. Mater Sci Eng A. 2019;746:11.

    Article  CAS  Google Scholar 

  78. Gao YH, Yang C, Zhang JY, Cao LF, Liu G, Sun J, Ma E. Stabilizing nanoprecipitates in Al–Cu alloys for creep resistance at 300 °C. Mater Res Lett. 2019;7(1):18.

    Article  CAS  Google Scholar 

  79. Zhao MQ, Xing Y, Jia ZH, Liu Q, Wu XZ. Effects of heating rate on the hardness and microstructure of Al–Cu and Al–Cu–Zr–Ti–V alloys. J Alloys Compd. 2016;686:312.

    Article  CAS  Google Scholar 

  80. Hu H, Zhao MQ, Wu XZ, Jia ZH, Wang R, Li WG, Liu Q. The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al–Cu–Zr alloys: HRTEM observations and first-principles calculations. J Alloys Compd. 2016;681:96.

    Article  CAS  Google Scholar 

  81. Biswas A, Siegel DJ, Seidman DN. Simultaneous segregation at coherent and semicoherent heterophase interfaces. Phys Rev Lett. 2010;105(7):076102.

    Article  CAS  Google Scholar 

  82. Chen BA, Liu G, Wang RH, Zhang JY, Jiang L, Song JJ, Sun J. Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys. Acta Mater. 2013;61(3):1676.

    Article  CAS  Google Scholar 

  83. Yang C, Zhang P, Shao D, Wang RH, Cao LF, Zhang JY, Liu G, Chen BA, Sun J. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al–Cu alloys with minor Sc addition. Acta Mater. 2016;119:68.

    Article  CAS  Google Scholar 

  84. Shin DW, Shyam A, Lee SK, Yamamoto Y, Haynes JA. Solute segregation at the Al/θ′–Al2Cu interface in Al–Cu alloys. Acta Mater. 2017;141:327.

    Article  CAS  Google Scholar 

  85. Dorin T, Ramajayam M, Lamb J, Langan T. Effect of Sc and Zr additions on the microstructure/strength of Al–Cu binary alloys. Mater Sci Eng A. 2017;707:58.

    Article  CAS  Google Scholar 

  86. Yao DM, Zhao WG, Zhao HL, Qiu F, Jiang QC. High creep resistance behavior of the casting Al–Cu alloy modified by La. Scr Mater. 2009;61(3):1153.

    Article  CAS  Google Scholar 

  87. Wang WT, Zhang XM, Gao ZG, Jia YZ, Ye LY, Zheng DW, Liu L. Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate. J Alloys Compd. 2010;491:366.

    Article  CAS  Google Scholar 

  88. Xiao DH, Wang JN, Ding DY, Yang HL. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy. J Alloys Compd. 2003;352:84.

    Article  CAS  Google Scholar 

  89. Bai S, Yi XL, Liu GH, Liu ZY, Wang J, Zhao JG. Effect of Sc addition on the microstructures and age-hardening behavior of an Al–Cu–Mg–Ag alloy. Mater Sci Eng. 2019;756:258.

    Article  CAS  Google Scholar 

  90. Gupta AK, Lloyd DJ, Court SA. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng A. 2001;316:11.

    Article  Google Scholar 

  91. Zhong H, Rometsch PA, Estrin Y. The influence of Si and Mg content on the microstructure, tensile ductility, and stretch formability of 6xxx alloys. Metall Mater Trans A. 2013;44(13):3970.

    Article  CAS  Google Scholar 

  92. Jiang SY, Wang RH. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J Mater Sci Technol. 2019;35(7):1354.

    Article  Google Scholar 

  93. Dorin T, Ramajayam M, Babaniaris S, Jiang L, Langan TJ. Precipitation sequence in Al–Mg–Si–Sc–Zr alloys during isochronal aging. Materialia. 2019;8(1):100437.

    Article  CAS  Google Scholar 

  94. Liu YH, Yan LM, Hou XH, Huang DN, Zhang JB, Shen J. Precipitates and corrosion resistance of an Al–Zn–Mg–Cu–Zr plate with different percentage reduction per passes. Rare Met. 2018;37(5):381.

    Article  CAS  Google Scholar 

  95. Deng Y, Yin ZM, Zhao K, Duan JQ, Hu J, He ZB. Effects of Sc and Zr microalloying additions and aging time at 120 °C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros Sci. 2012;65(1):288.

    Article  CAS  Google Scholar 

  96. Shi YJ, Pan QL, Li MJ, Huang X, Li B. Effect of Sc and Zr additions on corrosion behaviour of Al–Zn–Mg–Cu alloys. J Alloys Compd. 2014;612:42.

    Article  CAS  Google Scholar 

  97. Wang Y, Xiong BQ, Li ZH, Huang SH, Wen K, Li XW, Zhang YA. As-cast microstructure of Al–Zn–Mg–Cu–Zr alloy containing trace amount of Sc. Rare Met. 2019;38(4):343.

    Article  CAS  Google Scholar 

  98. Deng Y, Yin ZM, Zhao K, Duan JQ, He ZB. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J Alloys Compd. 2012;530:71.

    Article  CAS  Google Scholar 

  99. Li G, Zhao NQ, Liu T, Li JJ, He CN, Shi CS, Liu EZ, Sha JW. Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al–Zn–Mg–Sc–Zr alloys. Mater Sci Eng A. 2014;617:219.

    Article  CAS  Google Scholar 

  100. Liu L, Cui XY, Jiang JT, Zhang B, Nomoto K, Zhen L, Ringer SP. Segregation of the major alloying elements to Al–3(Sc, Zr) precipitates in an Al–Zn–Mg–Cu–Sc–Zr alloy. Mater Charact. 2019;157:109898.

    Article  CAS  Google Scholar 

  101. Zhang F, Su XK, Chen ZY, Nie ZR. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al–Zn–Mg–Cu aluminum alloy. Mater Des. 2015;67(2):483.

    Article  CAS  Google Scholar 

  102. Wu H, Wen SP, Huang H, Gao KY, Wu XL, Wang W, Nie ZR. Hot deformation behavior and processing map of a new type Al–Zn–Mg–Er–Zr alloy. J Alloys Compd. 2015;685:869.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51621063, 51625103, 51722104, 51790482, and 51761135031) and the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities (No. BP2018008). This work is also supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JY., Gao, YH., Yang, C. et al. Microalloying Al alloys with Sc: a review. Rare Met. 39, 636–650 (2020). https://doi.org/10.1007/s12598-020-01433-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01433-1

Keywords

Navigation