Skip to main content
Log in

Fabrication and characterization of stable temperature and reliable size oxide aperture VCSELs for short-reach communication

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

A continue wave of high-speed vertical-cavity surface-emitting lasers (VCSELs) for 980 nm short-reach communication is presented. The design of such devices is based on five strained InGaAs/GaAsP quantum wells QWs that enclosed between 20.5-periods p-doped top and 37-periods n-doped bottom epitaxially grown AlGaAs/GaAs distributed Bragg reflectors. VCSEL with current flow apertures of different area is fabricated and characterized at a range oxide aperture diameters  ~ 6 to 19 μm. These devices essentially used for improving the output optical power and exhibiting high modulation bandwidth at room temperature (RT). Experimental results of output light–current–voltage at threshold currents as low as 0.45 mA, together with the threshold current, current density, maximum power and maximum wall blug efficiency as a function of oxide aperture diameter at various temperature, are achieved. Optical spectra and small-signal analysis are performed for different bias currents (I) and oxide aperture diameters () in a wide range of temperatures. A small-signal modulation bandwidth (f-3dB) around 24 GHz is reached with  ~ 6 μm when I ~ 5.5 mA at RT of T ~ 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Taubenblatt, Optical interconnects for high-performance computing. J. Lightwave Technol. 30(4), 448–457 (2012). https://doi.org/10.1109/JLT.2011.2172989

    Article  ADS  Google Scholar 

  2. S.-C. Tian, M. Ahamed, D. Bimberg, Progress in short wavelength energy-efficient high-speed vertical-cavity surface-emitting lasers for data communication. Photonics 10(4), 410 (2023). https://doi.org/10.3390/photonics10040410

    Article  Google Scholar 

  3. F. Koyama, Advances and new functions of VCSEL. Photonics Opt. Rev. 21(6), 893–904 (2014). https://doi.org/10.1007/s10043-014-0142-6

    Article  Google Scholar 

  4. R.E. Freund, C.A. Bunge, N.N. Ledentsov, D. Molin, Ch. Caspar, High-speed transmission in multimode fibers. J. Light. Techol 28(4), 569–586 (2010). https://doi.org/10.1109/JLT.2009.2030897

    Article  ADS  Google Scholar 

  5. N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yshiki, K. Tokutome, T. Akagawa, M. Tsuji, High speed 1.1-µm-range InGaAs-based VCSELs. IEICE Trans. Electron. E92-C(7), 942–950 (2009). https://doi.org/10.1587/transele.E92.C.942

    Article  ADS  Google Scholar 

  6. . P. Westbergh, R. Safaisini, E. Haglund, J.S. Gustavsson, A. Larsson and A. Joel, High-speed oxide confined 850-nm VCSELs operating error-free at 47 Gbit/s at room temperature and 40 Gbit/s at 85°C. 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, Munich, Germany, 2013. https://doi.org/10.1109/CLEOE-IQEC.2013.6800720

  7. A. Liu, P. Wolf, J.A. Lott, D. Bimberg, Vertical-cavity surface-emitting lasers for data communication and sensing. Photonics Res. 7(2), 121–136 (2019). https://doi.org/10.1364/PRJ.7.000121

    Article  Google Scholar 

  8. S.H. Lee, D. Parekh, T. Shindo, W. Yang, P. Guo, D. Takahashi, N. Nishiyama, C.J. Chang-Hasnain, S. Arai, Bandwidth enhancement of injection-locked distributed reflector lasers with wirelike active regions. Opt. Express 18(16), 16370–16378 (2010). https://doi.org/10.1364/OE.18.016370

    Article  ADS  Google Scholar 

  9. M. Feng, C. Wu, N. Holonyak, Oxide-confined VCSELs for high-speed optical interconnects. IEEE J. Quantum Electron. 54(3), 1–15 (2018). https://doi.org/10.1109/JQE.2018.2817068

    Article  Google Scholar 

  10. T. Ohta, T. Uchida, T. Kondo, F. Koyama, Enhanced modulation bandwidth of surface-emitting laser with external optical feedback. IEICE Electron. Express. 1(13), 368–372 (2004). https://doi.org/10.1587/elex.1.368

    Article  Google Scholar 

  11. G. Morthier, R. Schard, O. Kjebon, Extended modulation bandwidth of DBR and external cavity lasers by utilizing a cavity resonance for equalization. IEEE J. Quantum Electron. 36(12), 1468–1475 (2000). https://doi.org/10.1109/3.892568

    Article  ADS  Google Scholar 

  12. J. Boucart et al., Metamorphic DBR and tunnel-junction injection. A CW RT monolithic long-wavelength VCSEL. J. Sel. Top. Quantum Electron. 5(3), 520–529 (1999). https://doi.org/10.1109/2944.788414

    Article  Google Scholar 

  13. F.A.I. Chaqmaqchee, S. Mazzucato, Y. Sun, N. Balkan, E. Tiras, M. Hugues, M. Hopkinson, Electrical characterisation of p-doped distributed Bragg reflectors in electrically pumped GaInNAs VCSOAs for 1.3 μm operation. Mater. Sci. Eng. B 177(10), 739–743 (2012). https://doi.org/10.1016/j.mseb.2011.12.035

    Article  Google Scholar 

  14. Y. Ohiso, T. Sato, T. Shindo, H. Matsuzaki, 1.3-µm buried-heterostructure VCSELs with GaAs/AlGaAs metamorphic DBRs grown by MOCVD. Electron. Lett. 56(2), 95–97 (2020). https://doi.org/10.1049/el.2019.2958

    Article  ADS  Google Scholar 

  15. F.A. Chaqmaqchee, A comparative study of electrical characterization of P-doped distributed bragg reflectors mirrors for 1300 nm vertical cavity semiconductor optical amplifiers. Aro-the Sci. J. Koya Univ. 9(1), 89–94 (2021). https://doi.org/10.14500/aro.10741

    Article  Google Scholar 

  16. Z. Khan, N. Ledentsov, L. Chorchos, J.-C. Shih, Y.-H. Chang, J.-W. Shi, Single-mode 940 nm VCSELs with narrow divergence angles and high-power performances for fiber and free-space optical communications. IEEE Access. 8, 72095–72101 (2020). https://doi.org/10.1109/ACCESS.2020.2987818

    Article  Google Scholar 

  17. T. Wipiejewski, M.G. Peters, B.J. Thibeault, D.B. Young, L.A. Coldren, Size-dependent output power saturation of vertical-cavity surface-emitting laser diodes. IEEE Photonics Technol. Lett. 8(1), 10–12 (1996). https://doi.org/10.1109/68.475761

    Article  ADS  Google Scholar 

  18. P.P. Baveja, B. Kögel, P. Westbergh, J.S. Gustavsson, Å. Haglund, D.N. Maywar, G.P. Agrawal, A. Larsson, Assessment of VCSEL thermal rollover mechanisms from measurements and empirical modeling. Opt. Express 19(16), 15490–15505 (2011). https://doi.org/10.1364/OE.19.015490

    Article  ADS  Google Scholar 

  19. K. Szczerba, P. Westbergh, J.S. Gustavsson, M. Karlsson, P.A. Andrekson, A. Larsson, Energy efficiency of VCSELs in the context of short-range optical links. IEEE Photonics Technol. Lett. 27(16), 1749–1752 (2015). https://doi.org/10.1109/LPT.2015.2439154

    Article  ADS  Google Scholar 

  20. F.A.I. Chaqmaqchee, J.A. Lott, Impact of oxide aperture diameter on optical output power, spectral emission, and bandwidth for 980 nm VCSELs. OSA Continuum. 3(9), 2602–2613 (2020). https://doi.org/10.1364/OSAC.397687

    Article  Google Scholar 

  21. H.-T. Cheng, Y.-C. Yang, C.-H. Wu, Temperature-insensitive 850-nm dual-mode-VCSEL with 25.1-GHz bandwidth at 85 °C. J. Lightwave Technol. 41(17), 5675–5687 (2023). https://doi.org/10.1109/JLT.2023.3263040

    Article  ADS  Google Scholar 

  22. . Y. -C. Yang, H. -T. Cheng and C. -H. Wu, 30 GHz highly damped oxide confined vertical-cavity surface-emitting laser. 2021 IEEE Photonics Conference (IPC), Vancouver, BC, Canada, 1−2 (2021). https://doi.org/10.1109/IPC48725.2021.9592916.

  23. H. Li, P. Wolf, P. Moser, G. Larisch, J.A. Lott, D. Bimberg, Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects. IEEE J. Sel. Top. Quantum Electron. 21(6), 405–413 (2015)

    Article  ADS  Google Scholar 

  24. F.A.I. Chaqmaqchee, Temperature stable 980 nm InGaAs/GaAsP vertical cavity surface emitting lasers for short-reach links. J. Optoelectron. Adv. Mater. 24(7–8), 312–317 (2022)

    Google Scholar 

  25. N. Haghighi, P. Moser, J.A. Lott, Power, bandwidth, and efficiency of single VCSELs and small VCSEL arrays. IEEE J. Sel. Top. Quantum Electron. 25(6), 1–15 (2019). https://doi.org/10.1109/JSTQE.2019.2922843

    Article  Google Scholar 

  26. F.A. Chaqmaqchee, long-wavelength GaInNAs/GaAs vertical-cavity surface-emitting laser for communication applications. Aro-the Sci. J. Koya Univ. 8(1), 107–111 (2020). https://doi.org/10.14500/aro.10627

    Article  Google Scholar 

  27. M. Gębski, D. Dontsova, N. Haghighi, K. Nunna, R. Yanka, A. Johnson, R. Pelzel, J.A. Lott, Baseline 1300 nm dilute nitride VCSELs. OSA Continuum. 3(7), 1952–1957 (2020). https://doi.org/10.1364/OSAC.396242

    Article  Google Scholar 

  28. A. Babichev, S. Blokhin, E. Kolodeznyi, L. Karachinsky, I. Novikov, A. Egorov, S.-C. Tian, D. Bimberg, Long-wavelength VCSELs: status and prospects. Photonics. 10(3), 268 (2023). https://doi.org/10.3390/photonics10030268

    Article  Google Scholar 

  29. F.A.I. Chaqmaqchee, Optically and electrically pumped of Ga0.65In0.35N0.02 As0.98/GaAs vertical-cavity surface-emitting lasers (VCSELs) for 1.3 μm wavelength operation. Arab. J. Sci. Eng. 39, 5785–5790 (2014). https://doi.org/10.1007/s13369-014-1126-3

    Article  Google Scholar 

  30. . A. Larsson, J.S. Gustavsson, P. Westbergh, E. Haglund, E.P. Haglund, E. Simpanen, T. Lengyel, K. Szczerba, M. Karlsson, VCSEL design and integration for high-capacity optical interconnects. Proceeding SPIE 10109, Optical Interconnects XVII, (2017). https://doi.org/10.1117/12.2249319

  31. C.-C. Shen, T.-C. Hsu, Y.-W. Yeh, C.-Y. Kang, Y.-T. Lu, H.-W. Lin, H.-Y. Tseng, Y.-T. Chen, C.-Y. Chen, C.-C. Lin, C.-H. Wu, P.-T. Lee, Y. Sheng, C.-H. Chiu, H.-C. Kuo, Design, modeling, and fabrication of high-speed VCSEL with data rate up to 50 Gb/s. Nanoscale Res. Lett. 14(276), 1–6 (2019). https://doi.org/10.1186/s11671-019-3107-7

    Article  Google Scholar 

  32. S.-C. Tian, M. Ahamed, G. Larisch, D. Bimberg, Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems. Jpn. J. Appl. Phys. (2022). https://doi.org/10.35848/1347-4065/ac65d9

    Article  Google Scholar 

  33. N. Haghighi, R. Rosales, G. Larisch, G. Marcin, L. Frasunkiewicz, T. Czyszanowski, and J.A. Lott, Simplicity VCSELs. Proceedings of SPIE. 10552, 1-9, (2018). https://doi.org/10.1117/12.2295028

  34. P. Moser, Energy-Efficient VCSELs for Optical Interconnects (Springer, Berlin and Heidelberg, 2016)

    Book  Google Scholar 

  35. F.A. Chaqmaqchee, Contact geometrical study for top emitting 980 nm InGaAs/GaAsP vertical-cavity surface emitting lasers. Aro-the Sci. J. Koya Univ. 9(2), 112–116 (2021). https://doi.org/10.14500/aro.10845

    Article  Google Scholar 

  36. R. Safaisini, E. Haglund, P. Westbergh, J.S. Gustavsson, A. Larsson, 20 Gb/s data transmission over 2 km multimode fibre using an 850 nm mode filter VCSEL. Electron. Lett. 50(1), 40–42 (2014). https://doi.org/10.1049/el.2013.2774

    Article  ADS  Google Scholar 

  37. Y. Satuby, M. Orenstein, Mode-coupling effects on the small signal modulation of multi transverse-mode vertical-cavity semiconductor lasers. IEEE J. Quantum Electron. 35(6), 944–954 (1999). https://doi.org/10.1109/3.766838

    Article  ADS  Google Scholar 

  38. . B.M. Hawkins, R.A. Hawthorne, J.K. Guenter, J.A. Tatum, and J.R. Biard, Reliability of various size oxide aperture VCSELs. Proceedings IEEE 52nd Electronic Components and Technology Conference, San Diego, CA USA. 540–550 (2002). https://doi.org/10.1109/ECTC.2002.1008148

  39. . P. Moser, P. Wolf, G. Larisch, H. Li, J.A. Lott, D. Bimberg, Energy-efficient oxide-confined high-speed VCSELs for optical interconnects. Proceedings of SPIE 9001, Vertical-Cavity Surface-Emitting Lasers XVIII, 900103 (2014). https://doi.org/10.1117/12.2044319

Download references

Acknowledgements

This work was funded by MARHABA Erasmus Mundus Lot 3 under grant number 2014-0653 of the European Union. FC highly appreciates the support of TU-Berlin team during this work. FC also acknowledges the support of KOU through this research.

Funding

The author declares they have no financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faten Adel Ismael Chaqmaqchee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaqmaqchee, F.A.I. Fabrication and characterization of stable temperature and reliable size oxide aperture VCSELs for short-reach communication. J Opt (2023). https://doi.org/10.1007/s12596-023-01519-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01519-w

Keywords

Navigation