Skip to main content
Log in

A Design and New Functionality of Antiwaveguiding Vertical-Cavity Surface-Emitting Lasers for a Wavelength of 850 nm

  • Near-IR Vertical-Cavity Surface-Emitting Lasers (Special Issue)
  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

Vertical-cavity surface-emitting lasers (VCSELs) with an aperture limited by an oxide and a resonance cavity based on GaAlAs with high Al content provide a maximum γ factor (λ/2 design) and suppression of optical power beyond the aperture. A VCSEL with two coupled cavities provides additional sharp growth of the loss of high-order lateral modes by leakage to the oxidized region and provides single-mode laser generation for an aperture diameter of up to 5 μm. Single-mode antiwaveguiding VCSELs provide ultrafast data transmission with a rate of up to 160 Gbit/s. The structure in which the active medium is placed in the lower distributed Bragg reflector and the cavity and the upper distributed Bragg reflector are dielectric, reducing the temperature shift of the radiation wavelength by a factor of 2 (to ∼0.03 nm/K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Iga, IEEE J. Sel. Top. Quant. Electron. 6, 1201 (2000).

    Article  Google Scholar 

  2. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, et al., IEEE J. Quantum Electron. 27, 1402 (1991).

    Article  ADS  Google Scholar 

  3. N. Ledentsov and V. Shchukin, US Patent No. 7339965 (2008).

    Google Scholar 

  4. N. N. Ledentsov, J.-R. Kropp, V. A. Shchukin, et al., Proc. SPIE 9381, 93810F (2015).

    Google Scholar 

  5. A. Mutig, G. Fiol, P. Moser, et al., Electron. Lett. 44, 1305 (2008).

    Article  Google Scholar 

  6. J.-R. Kropp, G. Steinle, G. Schäfer, et al., Semicond. Sci. Technol. 30, 045001 (2015).

    Article  ADS  Google Scholar 

  7. N. N. Ledentsov, V. A. Shchukin, and J. A. Lott, in Future Trends in Microelectronics: Into the Cross Currents, Ed. by S. Luryi, J. Xu, and A. Zaslavsky (Wiley, New York, 2013), p. 142.

  8. V. Shchukin, N. N. Ledentsov, J. Kropp, et al., IEEE J. Quantum Electron. 50, 990 (2014).

    Article  ADS  Google Scholar 

  9. G. Stepniak, A. Lewandowski, J.-R. Kropp, et al., Electron. Lett. 52, 633 (2016).

    Article  Google Scholar 

  10. C. Kottke, C. Caspar, V. Jungnickel, et al., in Proceedings of the Optical Fiber Comminication Conference (Opt. Soc. America, 2017), p. W41.7.

    Google Scholar 

  11. J. A. Lott, V. A. Shchukin, N. N. Ledentsov, et al., Electron. Lett. 47, 717 (2011).

    Article  Google Scholar 

  12. V. P. Kalosha, V. A. Shchukin, and N. N. Ledentsov, Jr., Proc. SPIE 10122, 101220K-1 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Ledentsov.

Additional information

Original Russian Text © N.N. Ledentsov, V.A. Shchukin, V.P. Kalosha, N.N. Ledentsov, Jr., J.R. Kropp, M. Agustin, S.A. Blokhin, A.A. Blokhin, M.A. Bobrov, M.M. Kulagina, Yu.M. Zadiranov, N.A. Maleev, 2018, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2018, Vol. 44, No. 1, pp. 85–94.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledentsov, N.N., Shchukin, V.A., Kalosha, V.P. et al. A Design and New Functionality of Antiwaveguiding Vertical-Cavity Surface-Emitting Lasers for a Wavelength of 850 nm. Tech. Phys. Lett. 44, 36–39 (2018). https://doi.org/10.1134/S1063785018010078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785018010078

Navigation