Skip to main content
Log in

Twice Stretched Fabrication of Polylactic Acid Microneedle Arrays Using Drawing Lithography

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

A biodegradable poly-lactic acid (PLA) microneedle array composed of needles with a maximum length of 3 mm and an aspect ratio of up to approximately 18 was fabricated by drawing lithography. In the proposed fabrication method, the melted polymer is stretched twice. The approximate length is set in the first stretch, and the tip is sharpened in the second stretch. In the first stretch, by changing the thickness of the PLA sheet, PLA pillars with various lengths are fabricated. By defining the initial length of the needle, it is possible to set a wide range of aspect ratios and lengths. In the second stretch, it is possible to control the final aspect ratio and length of the needle, as well as the shape of its tip by changing the temperature and stretch speed of the PLA pillars. Finally, it was confirmed that the needle can pierce the surface of artificial skin and porcine skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Singh, R., Singh, S., & Lillard, J. W. (2008). Past, present, and future technology for oral delivery of therapeutic proteins. Journal of Pharmaceutical Sciences, 97, 2497–2523.

    Article  Google Scholar 

  2. Barry, B. W. (2004). Breaching the skin’s barrier to drugs. Nature Biotechnology, 22, 165–167.

    Article  Google Scholar 

  3. Kim, Y. C., Park, J. H., & Prausnitz, M. R. (2012). Microneedles for drug and vaccine delivery. Advanced Drug Delivery Reviews, 64, 1547–1568.

    Article  Google Scholar 

  4. Larraneta, E., Lutton, R. E. M., Woolfson, A. D., & Donnelly, R. F. (2016). Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Materials Science and Engineering R, 104, 1–32.

    Article  Google Scholar 

  5. Martanto, W., Davis, S. P., Holiday, N. R., Wang, J., Gill, H. S., & Prausnitz, M. R. (2004). Transdermal delivery of insulin using microneedles in vivo. Pharmaceutical Research, 21(6), 947–952.

    Article  Google Scholar 

  6. Donnelly, R. F., Singh, T. R. R., Tunney, M. M., Morrow, D. I. J., McCarron, P. A., Mahony, C. O., et al. (2009). Microneedle arrays allow lower microbial penetration than hypodermic needles in vitro. Pharmaceutical Research, 26(11), 2513–2522.

    Article  Google Scholar 

  7. Roxhed, N., Gasser, T. C., Griss, P., Holzapfel, G. A., & Stemme, G. (2007). Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. Journal of Microelectromechanical Systems, 16(6), 1429–1440.

    Article  Google Scholar 

  8. Griss, P., Enoksson, P., Tolvanen-Laakso, H. K., Merilainen, P., Ollmar, S., & Stemme, G. (2001). Micromachined electrodes for biopotential measurements. Journal of Microelectromechanical System, 10(1), 10–16.

    Article  Google Scholar 

  9. Griss, P., & Stemme, G. (2003). Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. Journal of Microelectromechanical System, 12(3), 296–301.

    Article  Google Scholar 

  10. Bystrova, S., & Luttge, R. (2011). Micromolding for ceramic microneedle arrays. Microelectric Engineering, 88, 1681–1684.

    Article  Google Scholar 

  11. Hiraishi, Y., Hirobe, S., Iioka, H., Quan, Y. S., Kamiyama, F., Asada, H., et al. (2013). Development of a novel therapeutic approach using a retinoic acid-loaded microneedle patch for seborrheic keratosis treatment and safety study in humans. Journal of Controlled Release, 171, 93–103.

    Article  Google Scholar 

  12. Park, J. H., Davis, S., Yoon, Y. K., Prausnitz, M. R., and Allen, M. G. (2003). Micromachined biodegradable microstructures. The 16th Annual International Conference on Micro Electro Mechanical Systems, pp 371–374.

  13. Yagyu, H., Hayashi, S., & Tabata, O. (2006). Fabrication of plastic micro tip array using laser micromachining of nanoparticles dispersed polymer and micromolding. IEEJ Transactions on Sensors and Micromachines, 126(1), 7–13.

    Article  Google Scholar 

  14. Miyano, T., Tobinaga, Y., Kanno, T., Matsuzaki, Y., Takeda, H., Wakui, M., et al. (2005). Sugar micro needles as transdermic drug delivery system. Biomedical Microdevices, 7(3), 185–188.

    Article  Google Scholar 

  15. Park, J. H., Choi, S. O., Seo, S., Choy, Y. B., & Prausnitz, M. R. (2010). A microneedle roller for transdermal drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 76, 282–289.

    Article  Google Scholar 

  16. Cha, K. J., Kim, T., Park, S. J., & Kim, D. S. (2014). Simple and cost-effective fabrication of solid biodegradable polymer microneedle arrays with adjustable aspect ratio for transdermal drug delivery using acupuncture microneedles. Journal of Micromechanics and Microengineering, 24, 1–8.

    Google Scholar 

  17. Lee, S. G., Jeong, J. H., Lee, K. M., Jeong, K. H., Yang, H., Kim, M., et al. (2014). Nanostructured lipid carrier-loaded hyaluronic acid microneedles for controlled dermal delivery of a lipophilic molecule. International Journal of Nanomedicine, 9, 289–299.

    Google Scholar 

  18. Lee, K., Park, S. H., Lee, J. Y., Ryu, S., Joo, C., & Ryu, W. H. (2019). Three-step thermal drawing for rapid prototyping of highly customizable microneedles for vascular tissue insertion. Pharmaceutics, 11(100), 11030100.

    Google Scholar 

  19. Lee, K., Lee, C. Y., & Jung, H. (2011). Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 32, 3134–3140.

    Article  Google Scholar 

  20. Lee, K., Kim, J. D., Lee, C. Y., Her, S., & Jung, H. (2011). A high-capacity, hybrid electro-microneedle for in-situ cutaneous gene transfer. Biomaterials, 32, 7705–7710.

    Article  Google Scholar 

  21. Kim, J. D., Kim, M., Yang, H., Lee, K., & Jung, H. (2013). Droplet-born air blowing: novel dissolving microneedle fabrication. Journal of Controlled Release, 170, 430–436.

    Article  Google Scholar 

  22. Yang, H., Kim, S., Kang, G., Lahiji, S. F., Jang, M., Kim, Y. M., et al. (2017). Centrifugal lithography: self-shaping of polymer microstructures encapsulating biopharmaceutics by centrifuging polymer drops. Advanced Healthcare Materials, 6, 1700326.

    Article  Google Scholar 

  23. Lou, C. W., Yao, C. H., Chen, Y. S., Hsieh, T. C., Lin, J. H., & Hsing, W. H. (2008). Manufacturing and properties of PLA absorbable surgical suture. Textile Research Journal, 78(11), 958–965.

    Article  Google Scholar 

  24. Perego, G., Cella, G. D., & Bastioli, C. (1996). Effect of molecular weight and crystallinity on poly (lactic acid) mechanical properties. Journal of Applied Polymer Science, 59, 37–43.

    Article  Google Scholar 

  25. Yao, M., McKinley, G. H., & Debbaut, B. (1998). Extensional deformation, stress relaxation and necking failure of viscoelastic filaments. Journal of Non-Newtonian Fluid Mechanics, 79, 469–501.

    Article  Google Scholar 

  26. Suzuki, M., Takahashi, T., & Aoyagi, S. (2018). 3D laser lithographic fabrication of hollow microneedle mimicking mosquitos and its characterization. International Journal of Nanotechnology, 15, 157–173.

    Article  Google Scholar 

  27. Lee, K., & Jung, H. (2012). Drawing lithography for microneedles: a review of fundamentals and biomedical application. Biomaterials, 33, 7309–7326.

    Article  Google Scholar 

  28. Kolte, M. I., & Rasmussen, H. K. (1997). Transient filament stretching rheometer. Rheologica Acta, 36, 285–302.

    Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI (18H01415) from JSPS (Japanese Society for the Promotion of Science). This work was supported in part by a Strategic Research Foundation at Private Universities “Creation of 3D nano-micro structures and its application to biomimetics and medicine” from MEXT (Ministry of Education, Culture, Sports, Science, and Technology, Japan), 2015–2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shingo Terashima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terashima, S., Tatsukawa, C., Suzuki, M. et al. Twice Stretched Fabrication of Polylactic Acid Microneedle Arrays Using Drawing Lithography. Int. J. Precis. Eng. Manuf. 21, 1933–1942 (2020). https://doi.org/10.1007/s12541-020-00380-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00380-2

Keywords

Navigation