Skip to main content
Log in

Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

This study focuses on the water and gas chemistry of the northeastern Algerian thermal waters. The helium gas was used to detect the origin of the geothermal fluid. In the Guelma Basin, the heat flow map shows an anomaly of 120 ± 20 mW/m2 linked to the highly conductive Triassic extrusion. The chemical database reveals the existence of three water types, Ca-SO4/Na-Cl, which are related to evaporites and rich in halite and gypsum minerals. The third type is Ca (Na)-HCO3, which mostly characterizes the carbonated Tellian sector. The origin of thermal waters using a gas-mixing model indicates a meteoric origin, except for the El Biban hot spring (W10), which shows a He/Ar ratio of 0.213, thus suggesting the presence of batholith. The helium distribution map indicates a lower 3He/4He ratio between 0 Ra and 0.04 Ra in the W10 and W15 samples, which is compatible with the crustal ratio. Reservoir temperatures estimated by silica geothermometers give temperatures less than 133 °C. The geothermal conceptual model suggests that a geothermal system was developed by the deep penetration of infiltrated cold waters to a depth of 2.5 km and then heated by a conductive heat source (batholith for El Biban case). The thermal waters rise up to the surface through the deep-seated fractures. During their ascension, they are mixed with shallow cold groundwater, which increase the Mg content and cause the immature classification of the water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Auboin J, Durand-Delga M (1971) Aire mediterraneenne. Encyclopidia universalis 10:743–745

    Google Scholar 

  • Ballentine CJ, Burgess R, Marty B (2002) Tracing fluid origin, transport and interaction in the crust. In: Porcelli D, Ballentine CJ, Wieler R (eds) Noble gases in geochemistry and cosmochemistry. Rev Mineral Geochem 47:539–614

  • Belhai M, Fujimitsu Y, Bouchareb-Haouchine FZ, Haouchine A, Nishijima J (2016) A hydrochemical study of the Hammam Righa geothermal waters in north-central Algeria. Acta Geochemica 35(3):271–228

    Article  Google Scholar 

  • Bouchareb-Haouchine FZ (1993) Apport de la géothermométrie et des données de forages profonds à l’identification des ressources géothermiques de l’Algérie du Nord. Application à la région du Hodna. Mémoire de Magister, Univ. Alger, Algérie, 105p

  • Bouchareb-Haouchine FZ (2012) Etude Hydrochimique des Sources Thermales de l’Algérie du Nord- Potentialités Géothermiques. These Doctorat en Sciences, USTHB, Algiers, p. 135

  • Cermak V, Rybach L (1982) Thermal conductivity and specific heat of minerals and rocks. In: Angenheister G (ed) Landolt-Börnstein: numerical data and functional relationships in science and technology, new series, group V (geophysics and space research), Voi. 1a (physical properties of rocks). Springer, Berlin, pp. 305–343

    Google Scholar 

  • Cinti D, Tassi F, Procesi M, Bonini M, Capecchiacci F, Voltattorni N, Vaselli O, Quattrocchi F (2014) Fluid geochemistry and geothermometry in the unexploited geothermal field of the Vicano–Cimino Volcanic District (Central Italy). Chem Geol 371:96–114

    Article  Google Scholar 

  • Cormy G, Demians d’Archimbaud J (1970) Les possibilités géothermiques de l’Algérie. Geothermics 2:110–116

    Article  Google Scholar 

  • D’Amore F, Panichi C (1980) Evaluation of deep temperatures of hydrothermal systems by a new gas-geothermometer. Geochim Cosmochim Acta 44:549–556

    Article  Google Scholar 

  • Davisson ML, Criss RE (1996) Na-Ca-Cl relations in basinal fluids. Geochimica Cosmochimica Acta 60:2743–2752

    Article  Google Scholar 

  • Domzig A, Yelles A-K, Le Roy C, Déverchère J, Bouillin J-P, Bracene R, Mercier de Lépinay B, Le Roy P, Calais E, Kherroubi A, Gaullier V, Savoye B, Pauc H (2006) Searching for the Africa–Eurasia Miocène boundary offshore western Algeria (MARADJA’03 cruise). C R Geosci 338:80–91

    Article  Google Scholar 

  • Durand-Delga M (1969) Essai sur la structure du NE de la Berberie. Bull Serv Carte geol Algérie 39:89–181

    Google Scholar 

  • Edmunds WM, Guendouz AH, Mamou A, Moula A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822

    Article  Google Scholar 

  • ENEL (1982) Etude de reconnaissance geothermique du Constantinois oriental. Internal report SONELGAZ, 135 pp

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO (1979) Geochemical and hydrologic considerations and the use of enthalpy–chloride diagrams in the prediction of underground conditions in hot spring systems. J Volcanol Geotherm Res 5:1–6

    Article  Google Scholar 

  • Fournier RO (1992) Water geothermometers applied to geothermal energy. In: D’Amore F (Coordinator) Application of geochemistry in geothermal reservoir development. UNITAR/UNDP, Vial del Corso, Italy, pp. 37–69

  • Fournier RO, Potter RW (1979) Magnesium correction to the Na–K–Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550

    Article  Google Scholar 

  • Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. Geoth Res Council Bull, November, 3–12

  • Fournier RO, Truesdell AH (1973) An empirical Na–K–Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  • Fourré E, Di Napoli R, Aiuppa A, Parello F, Gaubi E, Jean-Baptiste P, Allard P, Calabrese S, Ben Mamou A (2011) Regional variations in the chemical and helium–carbon isotope composition of geothermal fluids across Tunisia. Chem Geol 288:67–85

    Article  Google Scholar 

  • Garcia MG, Del Hidalgo M, Blesa MA (2001) Geochemistry of groundwater in the alluvial plain of Tucuman province Argentina. J Hydrol 9:597–610

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF (1991) Chemical techniques in geothermal exploration. Applications of geochemistry in geothermal reservoir development series of technical guides on the use of geothermal energy, by Franco D’Amore, pp. 119–142

  • Giggenbach WF (1992) Isotopic composition of geothermal water and steam discharges. In: D’Amore F (Coordinator) Application of geochemistry in geothermal reservoir development. UNITAR/UNDP, Vial del Corso, Italy, pp. 253–273

  • Giggenbach WF, Goguel RL (1989) Collection and analysis of geothermal and volcanic water and gas discharges, Report No. CD 24014th ed. DSIR, New Zealand, p. 81

  • Gouskov N, Laffitte R (1951) Carte géologique de l’Algérie 1:500,000. Constantine sud Algeria. Service de la carte géologique de l’Algérie. Société nationale de recherche et d’exploitation des pétroles en Algérie

  • Guiraud R (1970) Sur la présence de décrochements dextres d’orientation E-W dans l atlas saharien. interpretation magmatique. C.R.S.S.G.F., FASC.8:316

  • Haklidir FT (2013) Hydrogeochemical evaluation of thermal, mineral and cold waters between Bursa city and Mount Uludag ̆ in the South Marmara region of Turkey. Geothermics 48:132–145

    Article  Google Scholar 

  • Herczeg AL, Edmunds WM (2000) Inorganic ions as tracers. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Kluwer Academic, Glen Osmond, pp. 31–77

    Chapter  Google Scholar 

  • Issaadi A (1992) Le Thermalisme dans son Cadre Geostructural, Apport a la connaissance de la structure profonde de l’Algérie et de ses Ressources Geothermales. These Doctorat d’Etat., Univ.Sci.et Tech., Alger

  • Italiano F, Yuce G, Uysal IT, Gasparon M, Morelli G (2014) Insights into mantle-type volatiles contribution from dissolved gases in artesian waters of the Great Artesian Basin, Australia. Chem Geol 378–379:75–88

    Article  Google Scholar 

  • Iundt F (1971) Potentiel géothermique de la Tunisie. Etude géochimique. Bureau de Recherches Géologiques et Minières. Service Géologique National, Orléans, France

  • Jean-Baptiste P, Allard P, Fourré E, Parello F, Aiuppa A (2014) Helium isotope systematics of volcanic gases and thermal waters of Guadeloupe Island, Lesser Antilles. J Volcanol Geotherm Res 283:66–72

    Article  Google Scholar 

  • Joseph EP, Fournier N, Lindsay J, Fischer T (2011) Gas and water geochemistry of geothermal systems in Dominica, Lesser Antilles island arc. J Volcanol Geotherm Res 206:1–14

    Article  Google Scholar 

  • Kedaid F-Z (2007) Database on the geothermal resources of Algeria. Geothermics 36:265–275

    Article  Google Scholar 

  • Kedaid F-Z, Mesbah M (1996) Geochemical approach to the Bou Hadjar hydrothermal system (NE Algeria). Geothermics 25:249–257

    Article  Google Scholar 

  • Lerche I, O’Brien J (1987) Dynamical geology of salt and related structures. Academic Press, Orlando, pp 163–259

  • Magri F, Littke R, Rodon S, Bayer U, Urai J L (2008). Temperature fields, petroleum maturation and fluid flow in the vicinity of salt domes. Dynamics of complex intracontinental basins—The Central European Basin System: Springer-Verlag, Berlin, pp 323–330

  • Magro G, Gherardi F, Bayon FEB (2013) Noble and reactive gases of Palinpinon geothermal field (Philippines): origin, reservoir processes and geodynamic implications. Chem Geol 339:4–15

    Article  Google Scholar 

  • Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier, New York

    Google Scholar 

  • Maouche S, Abtout A, Merabet N, Aïfa T, Lamali A, Bouyahiaoui B, Bougchiche S, Ayache M (2013) Tectonic and hydrothermal activities in Debagh, Guelma Basin (Algeria). J Geol Res 2013, Article ID 409475. 13 pages

  • Marty B, Dewonck S, France-Lanord C (2003) Geochemical evidence for efficient aquifer isolation over geological timeframes. Nature 425:55–58

    Article  Google Scholar 

  • Nicholson KN (1993) Geothermal fluids. Chemistry and exploration techniques, xv + 263 p

  • Nieva D, Nieva R (1987) Development in geothermal energy in Mexico, part 12—a cationic composition geothermometer for prospection of geothermal resources. Heat Recover Syst CHP 7:243–258

    Article  Google Scholar 

  • Rezig M (1991) Etude geothermique du Nord Est de l’Algerie. Memoire de DEA, Tectonique-Géophysique. Géochimie–Hydrogéol.[T.G.G.H]. Université de Monpellier 2, France, p. 58

  • Rezig M, Marty B (1995) Geothermal study of the northeastern part of Algeria. Proceedings of the World Geothermal Congress, vol. 2, Florence, Italy, pp. 1151–1155

  • Saibi H (2009) Geothermal resources in Algeria. Renew Sust Energ Rev 13:2544–2552

    Article  Google Scholar 

  • Tarcan G (2005) Mineral saturation and scaling tendencies of waters discharged from wells (>150 °C) in geothermal areas of Turkey. J Volcanol Geotherm Res 142:263–283

    Article  Google Scholar 

  • Tonani F (1980) Some remarks on the application of geochemical techniques in geothermal exploration. In: Proc. Adv. Eur. Geoth. Res., Second Symposium, Strasbourg, pp. 428–443

  • Truesdell AH (1976) Summary of section III. Geochemical techniques in exploration. Proceeding 2nd UN symposium on the development and use of geothermal resources, San Francisco, 1975, 1, liii-lxxix

  • Truesdell AH, Winnett TL, Nieva D, Barragan RM, Ramirez E, (1987). Chemical modeling of geothermal aquifer fluids with sample calculations for Los Azufres and Cerro Prieto. In: Proceedings of International Symposium On Development and Exploitation of Geothermal Resources, Cuernavaca, Mor., Mexico, pp. 194–201

  • Verdeil P (1982) Algerian thermalism in its geostructural setting. How hydrogeology has helped in the elucidation of Algeria’s deep seated structure. J Hydrol 56:107–117

    Article  Google Scholar 

  • Verma MP (2000) Revised quartz solubility temperature dependence equation along the water–vapor saturation curve. In: Proceedings of the 2000. World Geothermal Congress, 28 May–19 June, Kyushu and Tohoku, Japan, pp. 1927–1932

  • Werner C, Hurwitz S, Evans WC, Lowenstern JB, Bergfeld D, Heasler H, Jaworowski C, Hunt A (2008) Volatile emissions and gas geochemistry of Hot Spring Basin, Yellowstone National Park, USA. J Volcanol Geotherm Res 178:751–762

    Article  Google Scholar 

  • Wiersberg T, Süer S, Güleç N, Erzinger J, Parlaktuna M (2011) Noble gas isotopes and the chemical composition of geothermal gases from the eastern part of the Büyük Menderes Graben (Turkey). J Volcanol Geotherm Res 208:112–121

    Article  Google Scholar 

  • Wildi W (1983) La chaine tello-rifaine. Structure, stratigraphie et évolution du Trias au Miocène. Rev Geol Dyn et geogr Phys 24:201–297

    Google Scholar 

  • Zilberbrand M, Rosenthal E, Shachnai E (2001) Impact of urbanization on hydrochemical evolution of groundwater and on unsaturated-zone gas composition in the Coastal City of Tel Aviv, Israel. J Contam Hydrol 50:175–208

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to express his sincere thankful acknowledgements to Ms. Messaouda Rezig from the Research Center of Renewable Energy (CDER), Algiers, Algeria, for supplying the essential documentation and material on the hot springs investigated in this study. Finally, we thank the anonymous reviewers for their fruitful comments to enhance this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Belhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhai, M., Fujimitsu, Y., Nishijima, J. et al. Hydrochemistry and gas geochemistry of the northeastern Algerian geothermal waters. Arab J Geosci 10, 8 (2017). https://doi.org/10.1007/s12517-016-2790-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-016-2790-2

Keywords

Navigation