Skip to main content
Log in

A hydrochemical study of the Hammam Righa geothermal waters in north-central Algeria

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 °C and the hot waters from 32.1 to 68.2 °C. All waters exhibited a near-neutral pH of 6.0–7.6. The thermal waters had a high total dissolved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0–852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca–Na–SO4 type (Hammam Righa) and cold waters in the recharge zone of the Ca–Na–HCO3 type (Zaccar Mount). Reservoir temperatures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95 °C for HR4, HR2, and HR1, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1–2.2 km. The hot waters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca–Na–SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich groundwater, resulting in waters that plot in the immature water field in the Na–K–Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 < R < 29.2 %. We summarize these results with a geothermal conceptual model of the Hammam Righa geothermal field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alacalı M, Savaşçın MY (2015) Geothermometry and hydrothermal alteration at the Balçova geothermal field, Turkey. Geothermics 54:136–146

    Article  Google Scholar 

  • Auboin J, Durand-Delga M (1971) Aire mediterraneenne. Encyclopidia Universalis 10:743–745

    Google Scholar 

  • Belhai D (1996) Evolution tectonique de la zone Ouest-algeroise (Tenes-Chenoua), Approche stratigraphique et structurale. These Doctorat d’ Etat., Univ. Sci. et Tech., Alger

  • Belhai M, Bouchareb-Haouchine FZ, Fujimitsu Y (2013) Geochemistry of the Hammam Righa Thermal Manifestation North-Central Part of Algeria. Symposium on Earth Sciences and Technology. Kyushu University, Fukuoka, Japan

  • Bellon H (1976) Séries magmatiques néogènes et quaternaires du pourtour méditerranéen occidental, comparées dans leur cadre géochronométriques. Implications géodynamiques, thèse d’État, université Paris-Sud–Orsay

  • Bouaziz S, Barrier E, Soussi M, Turki M, Zouari H (2002) Tectonic evolution of the northern african margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 357:227–253

    Article  Google Scholar 

  • Bouchareb FZ (1987) Contribution à l’étude hydrogéologique des souces thermo-minérales de Hammam-Righa. Mémoire d’ingéniorat d’état, I.S.T, Univ. Sci. Tech. USTHB Alger

  • Bouchareb-Haouchine FZ (1993) Apports de la géothermométrie et des données de forages profonds à l’identification des réservoirs géothermiques de l’Algérie du Nord. Application à la région du Hodna. Thèse de Magister, Univ. Sci. Tech. USTHB Alger

  • Bouchareb-Haouchine FZ (2012) Etude Hydrochimique des Sources Thermales de l’Algérie du Nord- Potentialités Géothermiques. These Doctorat en Sciences, USTHB, Algiers

  • Bouchareb-Haouchine FZ, Boudoukha A, Haouchine A (2012) Hydrogéochimie et Géothermométrie: Apports à l’identification du réservoir thermal des sources de hammam Righa, Algérie. H.S.J. Hydrol Sci J 57(6):1184–1195

    Article  Google Scholar 

  • Capaccioni B, Tassi F, Renzulli A, Vaselli O, Menichetti M, Inguaggiato S (2014) Geochemistry of thermal fluids in NW Honduras: new perspectives for exploitation of geothermal areas in the southern Sula graben. J Volcanol Geoth Res 280:40–52

    Article  Google Scholar 

  • Craig H (1963) The isotopic geochemistry of water and carbon in geothermal area. In: Tongiori E (ed) Nuclear geology in geothermal areas. Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Spoleto

    Google Scholar 

  • Craig H, Boato G, White DE (1956) Isotopic geochemistry of thermal waters. Natl Acad Sci 400:29–38

    Google Scholar 

  • Domzig A, Yelles AK, Le Roy C, Déverchère J, Bouillin JP, Bracene R, Mercier de Lépinay B, Le Roy P, Calais E, Kherroubi A, Gaullier V, Savoye B, Pauc H (2006) Searching for the Africa-Eurasia Miocène boundary offshore western Algeria (MARADJA’03 cruise). Comptes Rendus Geosci 338:80–91

    Article  Google Scholar 

  • Fekraoui A, Kedaid FZ (2005) Geothermal resources and uses in Algeria: a country update report proceedings world geothermal congress 2005 Antalya, Turkey, 24–29 April

  • Fournier RO (1977) Chemical geothermometers and mixing models for geothermal systems. Geothermics 5:41–50

    Article  Google Scholar 

  • Fournier RO (1979) A revised equation for Na/K geothermometer. Geoth Res Council Trans 3:221–224

    Google Scholar 

  • Fournier RO (1992) Water geothermometers applied to geothermal energy. In: D’Amore, F. (Coordinator), Application of geochemistry in geothermal reservoir development. UNITAR/UNDP, Vial del Corso, Italy, pp. 37–69

  • Fournier RO, Potter RW (1979) Magnesium correction to the Na–K–Ca chemical geothermometer. Geochim Cosmochim Acta 43:1543–1550

    Article  Google Scholar 

  • Fournier RO, Potter RW (1982) A revised and expanded silica (quartz) geothermometer. Geothermal Research Council Bulletin, 3–12 November

  • Fournier RO, Truesdell AH (1973) An empirical Na–K–Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275

    Article  Google Scholar 

  • Fourré E, Di Napoli R, Aiuppa A, Parello F, Gaubi E, Jean-Baptiste P, Allard P, Calabrese S, Ben Mamou A (2011) Regional variations in the chemical and helium–carbon isotope composition of geothermal fluids across Tunisia. Chem Geol 288:67–85

    Article  Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall Inc., Englewood Cliffs

    Google Scholar 

  • Garrels RM, Mackenzie FT (1971) Evolution of sedimentary rocks. Norton, New York

    Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765

    Article  Google Scholar 

  • Giggenbach WF (1992) Isotopic composition of geothermal water and steam discharges. In: D’Amore F. (coordinator) Application of geochemistry in Geothermal Reservoir development.UNITAR/UNDP, Vial del Corso, Italy, pp. 253–273

  • Glangeaud L (1932) In: Cadoret Y (ed) Etude géologique de la région littorale de la Province d’Alger. Impr. de l’Univ., Bordeaux

    Google Scholar 

  • Guo Q, Wang Y (2012) Geochemistry of hot springs in the Tengchong hydrothermal areas, Southwestern China. J Volcanol Geotherm Res 215–216:61–73

    Article  Google Scholar 

  • Guo Q, Wang Y, Liu W (2009) Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. J Volcanol Geotherm Res 180:9–20

    Article  Google Scholar 

  • Han DM, Liang X, Jin MG, Currell MJ, Song XF, Liu CM (2010) Evaluation of groundwater hydrochemical characteristics and mixing behavior in the Daying and Qicun geothermal systems, Xinzhou basin. J Volcanol Geotherm Res 189:92–104

    Article  Google Scholar 

  • INRH (Institut National des Ressources Hydraulique), (1976) Contribution à l’estimation des potentialités hydriques du massif du Zaccar Chergui. Institut National des Ressources Hydriques, Note interne, rapport de mission, Alger

    Google Scholar 

  • Issaadi A (1992) Le Thermalisme dans son Cadre Geostructural, Apport a la connaissance de la structure profonde de l’Algérie et de ses Ressources Géothermales. These Doctorat d’Etat., Univ. Sci. et Tech., Alger

  • Lepvrier C, Velde D (1976) À propos des intrusions tertiaires de la marge nord-africaine entre Cherchel et Ténès (Algérie). Bull Soc Géol France 18(7):991–998

    Article  Google Scholar 

  • Mattauer M (1958) Carte géologique de l’Ouarsenis oriental, 2e éd. Editeur Serv. Cart. Géol. Algérie. 1/200000

  • Mutlu H (1998) Chemical geothermometry and fluid-mineral equilibria for the Omer-Gecek thermal waters, Afyon area, Turkey. J Volcanol Geotherm Res 80:303–321

    Article  Google Scholar 

  • Nicholson KN (1993) Geothermal fluids. Chemistry and exploration techniques. Springer, Berlin

    Book  Google Scholar 

  • Nieva D, Nieva R (1987) Development in geothermal energy in Mexico, part 12—a cationic composition geothermometer for prospection of geothermal resources. Heat Recovery Syst CHP 7:243–258

    Article  Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey: Earth Science Information Center, Open-File Reports Section [distributor], Water-Resources Investigations Report 99-4259

  • Pasvanoğlu S (2013) Hydrogeochemistry of thermal and mineralized waters in the Diyadin (Ağri) area, Eastern Turkey. Appl Geochem 38:70–81

    Article  Google Scholar 

  • Pasvanoğlu S, Chandrasekharam D (2011) Hydrogeochemical and isotopic study of thermal and mineralized waters from the Nevşehir (Kozakli) area, Central Turkey. J Volcanol Geotherm Res 202:241–250

    Article  Google Scholar 

  • Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patters in modern global precipitation. In: Swart PK et al (eds) Climate change in continental isotopic records. American Geophysical Union Monogr Ser, vol 78. American Geophysical Union, Washington, pp 1–36

    Chapter  Google Scholar 

  • Saibi H (2015) Geothermal resources in Algeria. In: Proceedings in World Geothermal Congress 2015, Melbourne, Australia, 19–24 April

  • Simmons SF (2002) Geochemistry Lecture Notes, Semester I, Geotherm 601, 602, 603, Geothermal Energy Technology Course Geothermal Institute, University of Auckland, New Zealand

  • Tarcan G (2005) Mineral saturation and scaling tendencies of waters discharged from wells (> 150°C) in geothermal areas of Turkey. J Volcanol Geotherm Res 142:263–283

    Article  Google Scholar 

  • Tonani F (1980) Some remarks on the application of geochemical techniques in geothermal exploration. In: Proc. Adv. Eur. Geoth. Res., Second Symposium, Strasbourg, pp. 428–443

  • Truesdell AH (1976) Summary of section III. Geochemical techniques in exploration. In: Proceeding 2nd UN symposium on the development and use of geothermal resources, San Francisco, 1975, 1, liii–lxxix

  • Verma MP (2000) Revised quartz solubility temperature dependence equation along the water–vapor saturation curve. In: Proceedings of the 2000. World Geothermal Congress, Kyushu and Tohoku, Japan, 28 May–19 June, pp. 1927–1932

  • White AF (1986) Chemical and isotopic characteristics of fluids within the baca geothermal reservoir, Valles Caldera, New Mexico. J Geophys Res 91:1855–1866

    Article  Google Scholar 

  • Wildi W (1983) La chaine tello-rifaine. Structure, stratigraphie et évolution du Trias au Miocène. Rev Geol Dyn et Geogr Phys 24:201–297

    Google Scholar 

Download references

Acknowledgments

We would like to express our sincere thankful acknowledgement for the MEXT (Ministry of Education, Culture, Sports, Science and Techn ology, Japan) Ph.D. scholarship providing support for the first author during this study. We would also like to show our sincere gratitude and acknowledgement to the G-COE of Kyushu University for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Belhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhai, M., Fujimitsu, Y., Bouchareb-Haouchine, F.Z. et al. A hydrochemical study of the Hammam Righa geothermal waters in north-central Algeria. Acta Geochim 35, 271–287 (2016). https://doi.org/10.1007/s11631-016-0092-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-016-0092-8

Keywords

Navigation