Skip to main content
Log in

Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most destructive diseases affecting rice production worldwide. In this study, we extracted and purified phenazine substances from the secondary metabolites of Lysobacter antibioticus 13-6. The bacteriostatic mechanism of phenazine substances against Xoc was investigated through physiological response and transcriptomic analysis. Results showed that phenazine substances affects the cell membrane permeability of Xoc, which causes cell swelling and deformation, blockage of flagellum synthesis, and imbalance of intracellular environment. The changes in intracellular environment affect the physiological and metabolic functions of Xoc, which reduces the formation of pathogenic factors and pathogenicity. Through transcriptomic analysis, we found that among differentially expressed genes, the expression of 595 genes was induced significantly (275 up-regulated and 320 down-regulated). In addition, we observed that phenazine substances affects three main functions of Xoc, i.e., transmembrane transporter activity, DNA-mediated transposition, and structural molecular activity. Phenazine substances also inhibits the potassium ion transport system that reduces Xoc resistance and induces the phosphate ion transport system to maintain the stability of the internal environment. Finally, we conclude that phenazine substances could retard cell growth and reduce the pathogenicity of Xoc by affecting cell structure and physiological metabolism. Altogether, our study highlights latest insights into the antibacterial mechanism of phenazine substances against Xoc and provides basic guidance to manage the incidence of bacterial leaf streak of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statements All raw data related to Transcriptomic analysis (RNA-seq) is submitted to the public database NCBI and is available as Sequence Read Archive (SRA) under accession number PRJNA756441.

Availability of Data and Material This material is the author’s own original work, which has not been previously published elsewhere and has no conflict of interest.

References

  • Ahmed, A., Munir, S., He, P., Li, Y., He, P., Yixin, W., and He, Y. 2020. Biocontrol arsenals of bacterial endophyte: an imminent triumph against clubroot disease. Microbiol. Res. 241, 126565.

    Article  CAS  PubMed  Google Scholar 

  • Ahmed, W., Yang, J., Tan, Y., Munir, S., Liu, Q., Zhang, J., Ji, G. and Zhao, Z. 2022. Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21, 100479.

    Article  Google Scholar 

  • Barman, R., Mondal, T., Sarkar, J., Sikder, A., and Ghosh, S. 2019. Self-assembled polyurethane capsules with selective antimicrobial activity against Gram-negative E. coli. ACS Biomater. Sci. Eng. 6, 654–663.

    Article  PubMed  CAS  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, Q., Zhou, G., Ahmed, W., Cao, Y., Zhao, M., Li, Z., and Zhao, Z. 2021. Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur. J. Plant Pathol. 160, 265–276.

    Article  CAS  Google Scholar 

  • Chen, C.H., Zheng, W., Huang, X., Zhang, D., and Lin, X. 2006. Major QTL conferring resistance to rice bacterial leaf streak. Agric. Sci. China 5, 216–220.

    Article  CAS  Google Scholar 

  • Cimmino, A., Evidente, A., Mathieu, V., Andolfi, A., Lefranc, F., Kornienko, A., and Kiss, R. 2012. Phenazines and cancer. Nat. Prod. Rep. 29, 487–501.

    Article  CAS  PubMed  Google Scholar 

  • Conforte, V.P., Malamud, F., Yaryura, P.M., Toum Terrones, L., Torres, P.S., De Pino, V., Chazarreta, C.N., Gudesblat, G.E., Castagnaro, A.P., Marano, M.R., et al. 2019. The histone-like protein HupB influences biofilm formation and virulence in Xanthomonas citri ssp. citri through the regulation of flagellar biosynthesis. Mol. Plant Pathol. 20, 589–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daher, W., Leclercq, L.D., Viljoen, A., Karam, J., Dufrêne, Y.F., Guérardel, Y., and Kremer, L. 2020. O-Methylation of the glycopeptidolipid acyl chain defines surface hydrophobicity of Mycobacterium abscessus and macrophage invasion. ACS Infect. Dis. 6, 2756–2770.

    Article  CAS  PubMed  Google Scholar 

  • Danchik, C. and Casadevall, A. 2020. Role of cell surface hydrophobicity in the pathogenesis of medically-significant fungi. Front. Cell. Infect. Microbiol. 10, 3389.

    Google Scholar 

  • Estrada-Cano, C., Castro, M.A.A., Muñoz-Castellanos, L., García-Triana, N., and Hernández-Ochoa, L. 2017. Antifungal activity of microcapsulated clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils against Fusarium oxysporum. J. Microb. Biochem. Technol 9, 567–571.

    Article  CAS  Google Scholar 

  • Fan, S., Tian, F., Li, J., Hutchins, W., Chen, H., Yang, F., Yuan, X., Cui, Z., Yang, C.H., and He, C. 2017. Identification of phenolic compounds that suppress the virulence of Xanthomonas oryzae on rice via the type III secretion system. Mol. Plant Pathol. 18, 555–568.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, G.M. and Spira, B. 2008. The pst operon of enteropathogenic Escherichia coli enhances bacterial adherence to epithelial cells. Microbiology 154, 2025–2036.

    Article  CAS  PubMed  Google Scholar 

  • Gao, Y., Ji, Y., Li, W., Luo, J., Wang, F., Zhang, X., Niu, Z., Zhou, L., and Yan, L. 2021. Endophytic fungi from Dalbergia odorifera T. Chen producing naringenin inhibit the growth of Staphylococcus aureus by interfering with cell membrane, DNA, and protein. J. Med. Food 24, 116–123.

    Article  CAS  PubMed  Google Scholar 

  • Gomes, T.A., Zanette, C.M., and Spier, M.R. 2020. An overview of cell disruption methods for intracellular biomolecules recovery. Prep. Biochem. Biotechnol. 50, 635–654.

    Article  CAS  PubMed  Google Scholar 

  • Gómez Expósito, R., Postma, J., Raaijmakers, J.M., and De Bruijn, I. 2015. Diversity and activity of Lysobacter species from disease suppressive soils. Front. Microbiol. 6, 1243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey, K.L., Jarocki, V.M., Charles, I.G., and Djordjevic, S.P. 2019. The diverse functional roles of elongation factor Tu (EF-Tu) in microbial pathogenesis. Front. Microbiol. 10, 2351.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hata, E.M., Sijam, K., Ahmad, Z.A.M., Yusof, M.T., and Azman, N.A. 2015. In vitro antimicrobial assay of actinomycetes in rice against Xanthomonas oryzae pv. oryzicola and as potential plant growth promoter. Braz. Arch. Biol. Technol. 58, 821–832.

    Article  CAS  Google Scholar 

  • Hifnawy, M.S., Hassan, H.M., Mohammed, R., Fouda, M.M., Sayed, A.M., Hamed, A.A., AbouZid, S.F., Rateb, M.E., Alhadrami, H.A., and Abdelmohsen, U.R. 2020. Induction of antibacterial metabolites by co-cultivation of two red-sea-sponge-associated actinomycetes Micromonospora sp. UR56 and Actinokinespora sp. EG49. Mar. Drugs 18, 243.

    Article  CAS  Google Scholar 

  • Huang, H., Sun, L., Bi, K., Zhong, G., and Hu, M. 2016. The effect of phenazine-1-carboxylic acid on the morphological, physiological, and molecular characteristics of Phellinus noxius. Molecules 21, 613.

    Article  PubMed Central  CAS  Google Scholar 

  • Jiang, J., Guiza Beltran, D., Schacht, A., Wright, S., Zhang, L., and Du, L. 2018. Functional and structural analysis of phenazine Omethyltransferase LaPhzM from Lysobacter antibioticus OH13 and one-pot enzymatic synthesis of the antibiotic Myxin. ACS Chem. Biol. 13, 1003–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, X., Lv, B., Wang, Y., Shen, Q., and Wang, X. 2017. Bactericidal mechanisms and effector targets of TiO2 and Ag-TiO2 against Staphylococcus aureus. J. Med. Microbiol. 66, 440–446.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, N., Yan, J., Liang, Y., Shi, Y., He, Z., Wu, Y., Zeng, Q., Liu, X., and Peng, J. 2020. Resistance genes and their interactions with bacterial blight/leaf streak pathogens (Xanthomonas oryzae) in rice (Oryza sativa L.)-an updated review. Rice 13, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ju, Y., Tian, H., Zhang, R., Zuo, L., Jin, G., Xu, Q., Ding, X., Li, X., and Chu, Z. 2017. Overexpression of OsHSP18. 0-CI enhances resistance to bacterial leaf streak in rice. Rice 10, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klopfenstein, D.V., Zhang, L., Pedersen, B.S., Ramírez, F., Vesztrocy, A.W., Naldi, A., Mungall, C.J., Yunes, J.M., Botvinnik, O., Weigel, M., et al. 2018. GOATOOLS: a python library for gene ontology analyses. Sci. Rep. 8, 10872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kudryavtseva, S.S., Pichkur, E.B., Yaroshevich, I.A., Mamchur, A.A., Panina, I.S., Moiseenko, A.V., Sokolova, O.S., Muronetz, V.I., and Stanishneva-Konovalova, T.B. 2021. Novel cryo-EM structure of an ADP-bound GroEL-GroES complex. Sci. Rep. 11, 18241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kühlbrandt, W. 2019. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 88, 515–549.

    Article  PubMed  CAS  Google Scholar 

  • Kurzbaum, E., Iliasafov, L., Kolik, L., Starosvetsky, J., Bilanovic, D., Butnariu, M., and Armon, R. 2019. From the Titanic and other shipwrecks to biofilm prevention: the interesting role of polyphenol-protein complexes in biofilm inhibition. Sci. Total Environ. 658, 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  • Laborda, P., Zhao, Y., Ling, J., Hou, R., and Liu, F. 2018. Production of antifungal p-aminobenzoic acid in Lysobacter antibioticus OH13. J. Agric. Food Chem. 66, 630–636.

    Article  CAS  PubMed  Google Scholar 

  • Lamarche, M.G., Wanner, B.L., Crépin, S., and Harel, J. 2008. The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461–473.

    Article  CAS  PubMed  Google Scholar 

  • Li, K., Wu, G., Liao, Y., Zeng, Q., Wang, H., and Liu, F. 2020. RpoN1 and RpoN2 play different regulatory roles in virulence traits, flagellar biosynthesis, and basal metabolism in Xanthomonas campestris. Mol. Plant Pathol. 21, 907–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, X., Wang, C., Yan, B., Lyu, L., Takiff, H.E., and Gao, Q. 2020. The potassium transporter KdpA affects persister formation by regulating ATP levels in Mycobacterium marinum. Emerg. Microbes Infect. 9, 129–139.

    Article  CAS  Google Scholar 

  • Liu, Q., Yang, J., Wang, X., Wei, L., and Ji, G. 2021. Effect of culture medium optimization on the secondary metabolites activity of Lysobacter antibioticus 13–6. Prep. Biochem. Biotechnol. 51, 1008–1017.

    Article  CAS  PubMed  Google Scholar 

  • Merda, D., Briand, M., Bosis, E., Rousseau, C., Portier, P., Barret, M., Jacques, M.A., and Fischer-Le Saux, M. 2017. Ancestral acquisitions, gene flow and multiple evolutionary trajectories of the type three secretion system and effectors in Xanthomonas plant pathogens. Mol. Ecol. 26, 5939–5952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munir, S., Ahmed, A., Li, Y., He, P., Singh, B.K., He, P., Li, X., Asad, S., Wu, Y., and He, Y. 2021. The hidden treasures of citrus: finding Huanglongbing cure where it was lost. Crit. Rev. Biotechnol. 30, 1–16.

    Article  CAS  Google Scholar 

  • Niño-Liu, D.O., Ronald, P.C., and Bogdanove, A.J. 2006. Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol. Plant Pathol. 7, 303–324.

    Article  PubMed  Google Scholar 

  • O’May, G.A., Jacobsen, S.M., Longwell, M., Stoodley, P., Mobley, H.L.T., and Shirtliff, M.E. 2009. The high-affinity phosphate transporter Pst in Proteus mirabilis HI4320 and its importance in biofilm formation. Microbiology 155, 1523–1535.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onaga, G., Murori, R., Habarugira, G., Nyongesa, O., Bigirimana, J., Oliva, R., Vera Cruz, C., Onyango, G., Andaku, J., and Ongom, J. 2018. First report of Xanthomonas oryzae pv. oryzicola causing bacterial leaf streak of rice in Kenya. Plant Dis. 102, 1025–1025.

    Article  Google Scholar 

  • Pan, J., Hao, X., Yao, H., Ge, K., Ma, L., and Ma, W. 2019. Matrine inhibits mycelia growth of Botryosphaeria dothidea by affecting membrane permeability. J. For. Res. 30, 1105–1113.

    Article  CAS  Google Scholar 

  • Pan, X., Xu, S., Wu, J., Duan, Y., Zheng, Z., Wang, J., Song, X., and Zhou, M. 2018a. Ankyrin-like protein AnkB interacts with CatB, affects catalase activity, and enhances resistance of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to phenazine-1-carboxylic acid. Appl. Environ. Microbiol. 84, e02145–17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, X., Xu, S., Wu, J., Luo, J., Duan, Y., Wang, J., Zhang, F., and Zhou, M. 2018b. Screening and characterization of Xanthomonas oryzae pv. oryzae strains with resistance to pheazine-1-carboxylic acid. Pestic. Biochem. Physiol. 145, 8–14.

    Article  CAS  PubMed  Google Scholar 

  • Panthee, S., Hamamoto, H., Paudel, A., and Sekimizu, K. 2016. Lysobacter species: a potential source of novel antibiotics. Arch. Microbiol. 198, 839–845.

    Article  CAS  PubMed  Google Scholar 

  • Papaianni, M., Ricciardelli, A., Casillo, A., Corsaro, M.M., Borbone, F., Della Ventura, B., Velotta, R., Fulgione, A., Woo, S.L., Tutino, M.L., et al. 2021. The union is strength: the synergic action of long fatty acids and a bacteriophage against Xanthomonas campestris biofilm. Microorganisms 9, 60.

    Article  CAS  Google Scholar 

  • Patra, J.K., Das, G., and Baek, K.H. 2015. Antibacterial mechanism of the action of Enteromorpha linza L. essential oil against Escherichia coli and Salmonella Typhimurium. Bot. Stud. 56, 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pegos, V.R., Nascimento, J.F., Sobreira, T.J.P., Pauletti, B.A., Paes-Leme, A., and Balan, A. 2014. Phosphate regulated proteins of Xanthomonas citri subsp. citri: a proteomic approach. J. Proteomics 108, 78–88.

    Article  CAS  PubMed  Google Scholar 

  • Qian, G., Zhou, Y., Zhao, Y., Song, Z., Wang, S., Fan, J., Hu, B., Venturi, V., and Liu, F. 2013. Proteomic analysis reveals novel extracellular virulence-associated proteins and functions regulated by the diffusible signal factor (DSF) in Xanthomonas oryzae pv. oryzicola. J. Proteome Res. 12, 3327–3341.

    Article  CAS  PubMed  Google Scholar 

  • Sekiya, M., Izumisawa, S., Iwamoto-Kihara, A., Fan, Y., Shimoyama, Y., Sasaki, M., and Nakanishi-Matsui, M. 2019. Proton-pumping F-ATPase plays an important role in Streptococcus mutans under acidic conditions. Arch. Biochem. Biophys. 666, 46–51.

    Article  CAS  PubMed  Google Scholar 

  • Shobha, B., Lakshmeesha, T.R., Ansari, M.A., Almatroudi, A., Alzohairy, M.A., Basavaraju, S., Alurappa, R., Niranjana, S.R., and Chowdappa, S. 2020. Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv. oryzae. J. Fungi 6, 181.

    Article  CAS  Google Scholar 

  • Stock, C., Hielkema, L., Tascón, I., Wunnicke, D., Oostergetel, G., Azkargorta, M., Paulino, C., and Hänelt, I. 2018. Cryo-EM structures of KdpFABC suggest a K+ transport mechanism via two inter-subunit half-channels. Nat. Commun. 9, 4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, X., Yang, J., Ahmed, W., Liu, Q., Wang, Y., Wei, L., and Ji, G. 2021. Functional analysis of pde gene and its role in the pathogenesis of Xanthomonas oryzae pv. oryzicola. Infect. Genet. Evol. 94, 105008.

    Article  CAS  Google Scholar 

  • Wang, H., Liao, L., Chen, S., and Zhang, L.H. 2020a. A quorum quenching bacterial isolate contains multiple substrate-inducible genes conferring degradation of diffusible signal factor. Appl. Environ. Microbiol. 86, e02930–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Liu, L., Mi, X., Zhao, S., An, Y., Xia, X., Guo, R., and Wei, C. 2021. Multi-omics analysis to visualize the dynamic roles of defense genes in the response of tea plants to gray blight. Plant J. 106, 862–875.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Liu, X., Wu, C., Zhang, M., Ke, Z., Jiang, W., Zhou, Y., Qiu, J., and Hong, Q. 2020b. An angular dioxygenase gene cluster responsible for the initial phenazine-1-carboxylic acid degradation step in Rhodococcus sp. WH99 can protect sensitive organisms from toxicity. Sci. Total Environ. 706, 135726.

    Article  CAS  PubMed  Google Scholar 

  • Wei, L., Yang, J., Ahmed, W., Xiong, X., Liu, Q., Huang, Q., and Ji, G. 2021. Unraveling the association between metabolic changes in inter-genus and intra-genus bacteria to mitigate clubroot disease of Chinese cabbage. Agronomy 11, 2424.

    Article  CAS  Google Scholar 

  • Wu, T., Peng, C., Li, B., Wu, W., Kong, L., Li, F., Chu, Z., Liu, F., and Ding, X. 2019. OsPGIPl-mediated resistance to bacterial leaf streak in rice is beyond responsive to the polygalacturonase of Xanthomonas oryzae pv. oryzicola. Rice 12, 90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, X., Chen, Z., Cao, J., Guan, H., Lin, D., Li, C., Lan, T., Duan, Y., Mao, D., and Wu, W. 2014. Toward the positional cloning of qBlsr5a, a QTL underlying resistance to bacterial leaf streak, using overlapping sub-CSSLs in rice. PLoS ONE 9, e95751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie, X., Chen, Z., Zhang, B., Guan, H., Zheng, Y., Lan, T., Zhang, J., Qin, M., and Wu, W. 2020. Transcriptome analysis of xa5-mediated resistance to bacterial leaf streak in rice (Oryza sativa L.). Sci. Rep. 10, 19439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., Kong, L., Gao, G., Li, C.Y., and Wei, L. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, M.., Xia, Z., Zhai, W., Xu, J., Zhou, Y., and Li, Z. 2008. Construction of double right-border binary vector carrying non-host gene Rxo1 resistant to bacterial leaf streak of rice. Rice Sci. 15, 243–246.

    Article  Google Scholar 

  • Xue, Y., Hu, M., Chen, S., Hu, A., Li, S., Han, H., Lu, G., Zeng, L., and Zhou, J. 2020. Enterobacter asburiae and Pantoea ananatis causing rice bacterial blight in China. Plant Dis. 105, 2078–2088.

    Article  Google Scholar 

  • Yang, F., Deng, X., Ma, W., Berletch, J.B., Rabaia, N., Wei, G., Moore, J.M., Filippova, G.N., Xu, J., Liu, Y., et al. 2015. The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol. 16, 52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang, P., Li, F.J., Huang, S.W., Luo, M., Lin, W., Yuan, G.Q., and Li, Q.Q. 2020. Physiological and transcriptional response of Xanthoonas oryzae pv. oryzae to berberine, an emerging chemical control. Phytopathology 110, 1027–1038.

    Article  CAS  PubMed  Google Scholar 

  • Yang, F., Qian, S., Tian, F., Chen, H., Hutchins, W., Yang, C.H., and He, C. 2016. The GGDEF-domain protein GdpX1 attenuates motility, exopolysaccharide production and virulence in Xanthomonas oryzae pv. oryzae. J. Appl. Microbiol. 120, 1646–1657.

    Article  CAS  PubMed  Google Scholar 

  • Ye, T., Zhou, T., Fan, X., Bhatt, P., Zhang, L., and Chen, S. 2019. Acinetobacter lactucae strain QL-1, a novel quorum quenching candidate against bacterial pathogen Xanthomonas campestris pv. campestris. Front. Microbiol. 10, 2867.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yoshida, Y., Sugiyama, S., Oyamada, T., Yokoyama, K., and Makino, K. 2010. Identification and characterization of novel phosphate regulon genes, ecs0540-ecs0544, in Escherichia coli O157: H7. Mol. Genet. Genomics 284, 197–205.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Tian, X., Kuang, S., Liu, G., Zhang, C., and Sun, C. 2017. Antagonistic activity and mode of action of phenazine-1-carboxylic acid, produced by marine bacterium Pseudomonas aeruginosa PA31x, against Vibrio anguillarum in vitro and in a zebrafish in vivo model. Front. Microbiol. 8, 289.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Wei, C., Jiang, W., Wang, L., Li, C., Wang, Y., Dow, J.M., and Sun, W. 2013. The HD-GYP domain protein RpfG of Xanthomonas oryzae pv. oryzicola regulates synthesis of extracellular polysaccharides that contribute to biofilm formation and virulence on rice. PLoS ONE 8, e59428.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, J., Wei, L., Yang, J., Ahmed, W., Wang, Y., Fu, L., and Ji, G. 2020. Probiotic consortia: reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of Panax notoginseng. Front. Microbiol. 11, 701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao, Y., Qian, G., Ye, Y., Wright, S., Chen, H., Shen, Y., Liu, F., and Du, L. 2016. Heterocyclic aromatic N-oxidation in the biosynthesis of phenazine antibiotics from Lysobacter antibioticus. Org. Lett. 18, 2495–2498.

    Article  CAS  PubMed  Google Scholar 

  • Zou, H.S., Song, X., Zou, L.F., Yuan, L., Li, Y.R., Guo, W., Che, Y.Z., Zhao, W.X., Duan, Y.P., and Chen, G.Y. 2012. EcpA, an extracellular protease, is a specific virulence factor required by Xanthomonas oryzae pv. oryzicola but not by X. oryzae pv. oryzae in rice. Microbiology 158, 2372–2383.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (2019YFD1002000), the National Natural Science Foundation of China (No. 32060601), and the Yunnan Ten Thousand Talents Plan Leading Talents of Industrial Technology Project of China (YNWR-CYJS-2019-046).

Author information

Authors and Affiliations

Authors

Contributions

GJ and LW conceived and designed the experiments. QL and XW performed the experiments. QL, JY, and WA analyzed the data and made the figures. QL and WA wrote the manuscript. All authors contributed to the final draft of the manuscript.

Corresponding author

Correspondence to Guanghai Ji.

Ethics declarations

Conflict of Interest The authors declare that they have no conflicts of interest.

Ethical Statements The paper reflects the author’s own research and analysis in a truthful and complete manner. All authors have been personally and actively involved in substantial work leading to the paper and will take public responsibility for its content.

Consent to Participate All authors have been personally and actively involved in substantive work leading to the manuscript and contributed to the preparation of the final draft of the manuscript.

Consent for Publication The manuscript has not been published in whole or in part elsewhere and is not currently being considered for publication in another journal. All the authors have seen the final version of the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Yang, J., Ahmed, W. et al. Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola. J Microbiol. 60, 496–510 (2022). https://doi.org/10.1007/s12275-022-1542-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-1542-0

Keywords

Navigation