Skip to main content
Log in

Effects of mycosubtilin homolog algicides from a marine bacterium, Bacillus sp. SY-1, against the harmful algal bloom species Cochlodinium polykrikoides

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The marine bacterium, Bacillus sp. SY-1, produced algicidal compounds that are notably active against the bloom-forming alga Cochlodinium polykrikoides. We isolated three algicidal compounds and identified these as mycosubtilins with molecular weights of 1056, 1070, and 1084 (designated MS 1056, 1070, and 1084, respectively), based on amino acid analyses and 1H, 13C, and two-dimensional nuclear magnetic resonance spectroscopy, including 1H-15N heteronuclear multiple bond correlation analysis. MS 1056 contains a β-amino acid residue with an alkyl side chain of C15, which has not previously been seen in known mycosubtilin families. MS 1056, 1070, and 1084 showed algicidal activities against C. polykrikoides with 6-h LC50 values of 2.3 ± 0.4, 0.8 ± 0.2, and 0.6 ± 0.1 μg/ml, respectively. These compounds also showed significant algicidal activities against other harmful algal bloom species. In contrast, MS 1084 showed no significant growth inhibitory effects against other organisms, including bacteria and microalgae, although does inhibit the growth of some fungi and yeasts. These observations imply that the algicidal bacterium Bacillus sp. SY-1 and its algicidal compounds could play an important role in regulating the onset and development of harmful algal blooms in natural environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D.M., Alpermann, T.J., Cembella, A.D., Collos, Y., Masseret, E., and Montresor, M. 2012. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14, 10–35.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, D.M., Kulis, D.M., Keafer, B.A., and Berdalet, E. 1999. Detection of the toxic dinoflagellate Alexandrium fundyense (Dinophyceae) with oligonucleotide and antibody probes: variability in labeling intensity with physiological condition. J. Phycol. 35, 870–883.

    Article  Google Scholar 

  • Arima, K., Kakinuma, A., and Tamura, G. 1968. Surfactin, a crystalline peptide-lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31, 488–494.

    Article  CAS  PubMed  Google Scholar 

  • Baker, K.H. and Herson, D.S. 1978. Interactions between the diatom Thallasiosira pseudonanna and an associated pseudomonad in a mariculture system. Appl. Environ. Microbiol. 35, 791–796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bax, A. and Subramanian, S. 1986. Sensitivity-enhanced two-dimensional heteronuclear shift correlation NMR spectroscopy. J. Magn. Reson. 67, 565–569.

    CAS  Google Scholar 

  • Berdalet, E., Fleming, L.E., Gowen, R., Davidson, K., Hess, P., Backer, L.C., Moore, S.K., Hoagland, P., and Enevoldsen, H. 2016. Marine harmful algal blooms, human health and wellbeing: challenges and opportunities in the 21st century. J. Mar. Biol. Assoc. UK 96, 61–91.

    Article  Google Scholar 

  • Besson, F. and Michel, G. 1987. Isolation and characterization of new iturins: iturin D and iturin E. J. Antibiot. 40, 437–442.

    Article  CAS  Google Scholar 

  • Besson, F. and Michel, G. 1990. Mycosubtilins B and C: minor antibiotics from mycosubtilin-producers Bacillus subtilis. Microbios 62, 93–99.

    CAS  PubMed  Google Scholar 

  • Besson, F., Peypoux, F., Michel, G., and Delcambe, L. 1978. Identification of antibiotics of iturin group in various strains of Bacillus subtilis. J. Antibiot. 31, 284–288.

    Article  CAS  Google Scholar 

  • Besson, F., Peypoux, F., Michel, G., and Delcambe, L. 1979. Antifungal activity upon Saccharomyces cerevisiae of iturin A, mycosubtilin, bacillomycin L and of their derivatives; inhibition of this antifungal activity by lipid antagonists. J. Antibiot. 32, 828–833.

    Article  CAS  Google Scholar 

  • Canton, M.C., Holguin, F.O., and Boeing, W.J. 2019. Alkaloid gramine to control algal invaders: algae inhibition and gramine persistence. Bioresour. Technol. Rep. 7, 100304.

    Article  Google Scholar 

  • Chi, W., Li, Z., He, C., Han, B., Zheng, M., Gao, W., Sun, C., Zhou, Z., and Gao, X. 2017. Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation. AMB Expr. 7, 59.

    Article  CAS  Google Scholar 

  • Doucette, G.J., McGovern, E.R., and Babinchak, J.A. 1999. Algicidal bacteria active against Gymnodinium breve (Dinophyceae), I. Bacterial isolation and characterization of killing activity. J. Phycol. 35, 1447–1454.

    Article  Google Scholar 

  • Droop, M.R. 1967. A procedure for routine purification of algae cultures with antibiotics. Brit. Phycol. Bull. 3, 295–297.

    Article  Google Scholar 

  • Duitman, E.H., Hamoen, L.W., Rembold, M., Venema, G., Seitz, H., Saenger, W., Bernhard, F., Reinhardt, R., Schmidt, M., Ullrich, C., et al. 1999. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA 96, 13294–13299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukami, K., Nishijima, T., Murata, H., Doi, S., and Hata, Y. 1991. Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakiense red tide and their effects on algal growth. Nippon Suisan Gakkaishi 57, 2321–2326.

    Article  Google Scholar 

  • Fukami, K., Yuzawa, A., Nishijima, T., and Hata, Y. 1992. Isolation and properties of a bacterium inhibiting the growth of Gymnodinium nagasakiense. Nippon Suisan Gakkaishi 58, 1073–1077.

    Article  Google Scholar 

  • Furihata, K. and Seto, H. 1998. Constant time HMBC (CT-HMBC), a new HMBC technique useful for improving separation of cross peaks. Tetrahedron Lett. 39, 7337–7340.

    Article  CAS  Google Scholar 

  • Gao, Y., Fu, Q., Lu, J., Yang, H., Orr, P.T., Zhang, F., Dong, J., Zhang, M., Gu, Q., Zhou, C., et al. 2020. Enhanced pyrogallol toxicity to cyanobacterium Microcystis aeruginosa with increasing alkalinity. J. Appl. Phycol. 32, 1827–1835.

    Article  CAS  Google Scholar 

  • Glibert, P.M., Anderson, D.M., Gentien, P., Granéli, E., and Sellner, K.G. 2005. The global complex phenomena of Harmful Algal Blooms. Oceanography 18, 136–147.

    Article  Google Scholar 

  • Guillard, R.R.L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W.H. and Chanley, M.H. (eds.), Culture of marine invertebrate animals, pp. 29–60. Springer, Boston, Massachusetts, USA.

    Chapter  Google Scholar 

  • Guillard, R.R.L. and Ryther, J.H. 1962. Studies of marine planktonic diatoms. 1. Cyclotella nana (HUSTEDT) and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Guo, X., Liu, X., Wu, L., Pan, J., and Yang, H. 2016. The algicidal activity of Aeromonas sp. strain GLY-2107 against bloom-forming Microcystis aeruginosa is regulated by N-acyl homoserine lactone-mediated quorum sensing. Environ. Microbiol. 18, 3867–3883.

    Article  CAS  PubMed  Google Scholar 

  • Hiradate, S., Yoshida, S., Sugie, H., Yada, H., and Fujii, Y. 2002. Mulberry anthracnose antagonists (iturins) produced by Bacillus amyloliquefaciens RC-2. Phytochem. 61, 693–698.

    Article  CAS  Google Scholar 

  • Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., and Visser, P.M. 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483.

    Article  CAS  PubMed  Google Scholar 

  • Imai, I., Ishida, Y., and Hata, Y. 1993. Killing of marine phytoplankton by a gliding bacterium Cytophaga sp., isolated from the coastal Sea of Japan. Mar. Biol. 116, 527–532.

    Article  Google Scholar 

  • Imai, I., Ishida, Y., Sakaguichi, K., and Hata, Y. 1995. Algicidal marine bacteria isolated from northern Hiroshima Bay, Japan. Fish. Sci. 61, 628–636.

    Article  CAS  Google Scholar 

  • Imai, I., Nagagiri, S., Nagai, K., Nagasaki, K., Itakura, S., and Yamaguchi, M. 1998. Fluctuations of algicidal microorganisms against the harmful dinoflagellate Heterocapsa circularisquama in Ago Bay, Mie Prefecture, Japan. Bull. Nansei Natl. Fish. Res. Inst. 31, 53–61.

    Google Scholar 

  • Imai, I., Sunahara, T., Nishikawa, T., Hori, Y., Kondo, R., and Hiroishi, S. 2001. Fluctuations of the red tide flagellates Chattonella spp. (Raphidophyceae) and the algicidal bacterium Cytophaga sp. in the Seto Inland Sea, Japan. Mar. Biol. 138, 1043–1049.

    Article  CAS  Google Scholar 

  • Inaba, N., Trainer, V.L., Onishi, Y., Ishii, K.I., Wyllie-Echeverria, S., and Imai, I. 2017. Algicidal and growth-inhibiting bacteria associated with seagrass and macroalgae beds in Puget Sound, WA, USA. Harmful Algae 62, 136–147.

    Article  PubMed  Google Scholar 

  • Jeong, S.Y., Ishida, K., Ito, Y., Okada, S., and Murakami, M. 2003. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett. 44, 8005–8007.

    Article  CAS  Google Scholar 

  • Jeong, S.Y., Park, Y.T., and Lee, W.J. 2000. Isolation of marine bacteria killing red tide microalgae, III. Algicidal effects of marine bacterium, Micrococcus sp. LG-5 against the harmful dinoflagellate, Cochlodinium polykrikoides. Korean J. Fish. Aquat. Sci. 33, 331–338.

    Google Scholar 

  • Kalinovskaya, N.I., Kuznetsova, T.A., Ivanova, E.P., Romanenko, L.A., Voinov, V.G., Huth, F., and Laatsch, H. 2002. Characterization of surfactin-like cyclic depsipeptides synthesized by Bacillus pumilus from ascidian Halocynthia aurantium. Mar. Biotechnol. 4, 179–188.

    Article  CAS  Google Scholar 

  • Kim, H.G. 1997. Recent harmful algal blooms and mitigation strategies in Korea. Ocean Polar Res. 19, 185–192.

    CAS  Google Scholar 

  • Kim, Y.S., Jeong, S.Y., Lee, S.J., and Lee, W.J. 2009. Isolation and characteristics of Brachybacterium sp. SY-97 killing the harmful dinoflagellate Cochlodinium polykrikoides. J. Environ. Sci. 18, 435–443.

    Google Scholar 

  • Kim, D., Oda, T., Muramatsu, T., Kim, D., Matsuyama, Y., and Honjo, T. 2002. Possible factors responsible for the toxicity of Cochlodinium polykrikoides, a red tide phytoplankton. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 132, 415–423.

    Article  PubMed  Google Scholar 

  • Kim, Y.S., Son, H.J., and Jeong, S.Y. 2015. Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species. J. Microbiol. 53, 511–517.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J., Xiao, M.L., Lee, J.J.L., Zhao, G., Chin, S.F., Yang, L., and Chen, W.N. 2018. Metabolomics analysis of Pseudomonas chlororaphis JK12 algicidal activity under aerobic and micro-aerobic culture condition. AMB Expr. 8, 131.

    Article  CAS  Google Scholar 

  • Kim, M.C., Yoshinaga, I., Imai, I., Nagasaki, K., Itakura, S., and Ishida, Y. 1998. A close relationship between algicidal bacteria and termination of Heterosigma akashiwo (Raphidophyceae) bloom in Hiroshima Bay, Japan. Mar. Ecol. Prog. Ser. 170, 25–32.

    Article  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Kowall, M., Vater, J., Kluge, B., Stein, T., Franke, P., and Ziessow, D. 1998. Separation and characterization of surfactin isoforms produced by Bacillus subtilis OKB 105. J. Colloid Interface Sci. 204, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y.C., Jin, E.S., Jung, S.W., Kim, Y.M., Chang, K.S., Yang, J.W., Kim, S.W., Kim, Y.O., and Shin, H.J. 2013. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Sci. Rep. 3, 1292.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, S., Kato, J., Takiguchi, N., Kuroda, A., Ikeda, T., Mitsutani, A., and Ohtake, H. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66, 4334–4339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, S.C., Minton, M.A., Sharma, M.M., and Georgiou, G. 1994. Structural and immunological characterization of a biosurfactant produced by Bacillus licheniformis JF-2. Appl. Environ. Microbiol. 60, 31–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovejoy, C., Bowman, J.P., and Hallegraeff, G.M. 1998. Algicidal effects of a novel marine Pseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algal bloom species of the genera Chattonella, Gymnodinium, and Heterosigma. Appl. Environ. Microbiol. 64, 2806–2813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacFaddin, J.F. 1980. Biochemical tests for identification of medical bacteria, pp. 36–308. 2nd ed. Williams and Wilkins Co., Baltimore, USA.

    Google Scholar 

  • Maget-Dana, R. and Peypoux, F. 1994. Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicolgy 87, 151–174.

    Article  CAS  Google Scholar 

  • Maget-Dana, R. and Ptak, M. 1990. Iturin lipopeptides: interactions of mycosubtilin with lipids in planar membranes and mixed monolayers. Biochim. Biophys. Acta 1023, 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Marfey, P. 1984. Determination of D-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carsberg Res. Commun. 49, 591.

    Article  CAS  Google Scholar 

  • Mayali, X. and Azam, F. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51, 139–144.

    Article  PubMed  Google Scholar 

  • Mitsutani, A., Takesue, K., Kirita, M., and Ishida, Y. 1992. Lysis of Skeletonema costatum by Cytophaga sp. isolated from the coastal water of the Ariake Sea. Nippon Suisan Gakkaishi 58, 2159–2167.

    Article  Google Scholar 

  • Mitsutani, A., Yamasaki, I., Kitaguchi, H., Kato, J., Ueno, S., and Ishida, Y. 2001. Analysis of algicidal proteins of a diatom-lytic marine bacterium Pseudoalteromonas sp. strain A25 by two-dimensional electrophoresis. Phycologia 40, 286–291.

    Article  Google Scholar 

  • Nakashima, T., Miyazaki, Y., Matsuyama, Y., Muraoka, W., Yamaguchi, K., and Oda, T. 2006. Producing mechanism of an algicidal compound against red tide phytoplankton in a marine bacterium γ-proteobacterium. Appl. Microbiol. Biotechnol. 73, 684–690.

    Article  CAS  PubMed  Google Scholar 

  • Neefs, J.M., Van de Peer, Y., de Rijk, P., Chapelle, S., and de Wachter, R. 1993. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res. 21, 3025–3049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, L., Acharya, K., Hao, X., and Li, S. 2012. Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae. Chemosphere 88, 1051–1057.

    Article  CAS  PubMed  Google Scholar 

  • Ni, L., Rong, S., Gu, G., Hu, L., Wang, P., Li, D., Yue, F., Wang, N., Wu, H., and Li, S. 2018. Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases. Chemosphere 212, 654–661.

    Article  CAS  PubMed  Google Scholar 

  • Onoue, Y. and Nozawa, K. 1989. Separation of toxins from harmful red tides occurring along the coast of Kagoshima Prefecture. In Okaichi, T., Anderson, D.M., and Nemoto, T. (eds.), Red tides: Biology, Environmental Science, and Toxicology, pp. 371–374. Elsevier, New York, USA.

    Google Scholar 

  • Park, Y.T., Park, J.B., Chung, S.Y., Song, B.C., Lim, W.A., Kim, C.H., and Lee, W.J. 1998. Isolation of marine bacteria killing red tide microalgae, I. Isolation and algicidal properties of Micrococcus sp. LG-1 possessing killing activity for harmful dinoflagellate, Cochlodinium polykrikoides. Korean J. Fish. Aquat. Soc. 31, 767–773.

    Google Scholar 

  • Peypoux, F., Bonmatin, J.M., and Wallach, J. 1999. Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biotechnol. 51, 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Peypoux, F., Pommier, M.T., Marion, D., Ptak, M., Das, B.C., and Michel, G. 1986. Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J. Antibiot. 39, 636–641.

    Article  CAS  Google Scholar 

  • Pitt, J.I. and Hocking, A.D. 1997. Fungi and food spoilage. Blackie Academic and Professional, London, UK.

    Book  Google Scholar 

  • Rosen, M.J. 1989. Surfactants and Interfacial Phenomena. John Wiley & Sons, Inc., New York, USA.

    Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Skerratt, J.H., Bowman, J.P., Hallegraeff, G.M., James, S., and Nichols, P.D. 2002. Algicidal bacteria associated with blooms of a toxic dinoflagellate in a temperate Australian estuary. Mar. Ecol. Prog. Ser. 244, 1–15.

    Article  Google Scholar 

  • Stachelhaus, T., Schneider, A., and Mahariel, M.A. 1995. Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269, 69–72.

    Article  CAS  PubMed  Google Scholar 

  • Su, J.Q., Yang, X.R., Zheng, T.L., Tian, Y., Jiao, N.Z., Cai, L.Z., and Hong, H.S. 2007. Isolation and characterization of a marine algicidal bacterium against the toxic dinoflagellate Alexandrium tamarense. Harmful Algae 6, 799–810.

    Article  CAS  Google Scholar 

  • Su, J., Yang, X., Zhou, Y., and Zheng, T. 2011. Marine bacteria antagonistic to the harmful algal bloom species Alexandrium tamarense (Dinophyceae). Biol. Control 56, 132–138.

    Article  Google Scholar 

  • Taga, N. 1968. Some ecological aspects of marine bacteria in the Kuroshio Current. Bull. Misaki Mar. Biol. Inst. Kyoto Univ. 12, 56–76.

    Google Scholar 

  • Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuge, K., Akiyama, T., and Shoda, M. 2001. Cloning, sequencing, and characterization of the iturin A operon. J. Bacteriol. 183, 6265–6273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchida, T., Toda, S., Matsuyama, Y., Yamaguchi, M., Kotani, Y., and Honjo, T. 1999. Interactions between the red tide dinoflagellate Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. J. Exp. Mar. Biol. Ecol. 241, 285–299.

    Article  Google Scholar 

  • Vanittanakom, N., Loeffler, W., Koch, U., and Jung, G. 1986. Fengycin—a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J. Antibiot. 39, 888–901.

    Article  CAS  Google Scholar 

  • Walton, R.B. and Woodruff, H.B. 1949. A crystalline antifungal agent, mycosubtilin, isolated from subtilin broth. J. Clin. Invest. 28, 924–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, X., Gong, L., Liang, S., Han, X., Zhu, C., and Li, Y. 2005. Algicidal activity of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa. Harmful Algae 4, 433–443.

    Article  CAS  Google Scholar 

  • Wang, Y., Liu, Q., Wei, Z., Liu, N., Li, Y., Li, D., Jin, Z., and Xu, X. 2018. Thiazole amides, a novel class of algaecides against freshwater harmful algae. Sci. Rep. 8, 8555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, B., Yang, X.R., Lu, J., Zhou, Y., Su, J., Tian, Y., Zhang, J., Wang, G.H., and Zheng, T.L. 2012. A marine bacterium producing protein with algicidal activity against Alexandrium tamarense. Harmful Algae 13, 83–88.

    Article  CAS  Google Scholar 

  • Watanabe, M.M., Kawachi, M., Hiroki, M., and Kasai, F. 2000. NIES-collection list of strains. Microalgae and Protozoa. 6th edn. National Institute for Environmental Studies Environment Agency. Tsukuba, Japan.

    Google Scholar 

  • Whyte, J.N.C., Haigh, N., Ginther, N.G., and Keddy, L.J. 2001. First record of blooms of Cochlodinium sp. (Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada. Phycologia 40, 298–304.

    Article  Google Scholar 

  • Wickerham, L.J. 1951. Taxonomy of yeasts. U.S. Technical bulletin no. 1029., US department of agriculture, Washington, DC, USA.

    Google Scholar 

  • Yanagi, T., Yamamoto, T., Koizumi, Y., Ikeda, T., Kamizono, M., and Tamori, H. 1995. A numerical simulation of red tide formation. J. Mar. Syst. 6, 269–285.

    Article  Google Scholar 

  • Yoshinaga, I., Kawai, T., and Ishida, Y. 1997. Analysis of algicidal ranges of the bacteria killing the marine dinoflagellate Gymnodinium mikimotoi isolated from Tanabe Bay, Wakayama Pref., Japan. Fish. Sci. 63, 94–98.

    Article  CAS  Google Scholar 

  • Yoshinaga, I., Kawai, T., Takeuchi, T., and Ishida, Y. 1995. Distribution and fluctuation of bacteria inhibiting the growth of a marine red tide phytoplankton Gymnodinium mikimotoi in Tanabe Bay (Wakayama Pref., Japan). Fish. Sci. 61, 780–786.

    Article  CAS  Google Scholar 

  • Yoshinaga, I., Kim, M.C., Katanozaka, N., Imai, I., Uchia, A., and Ishia, Y. 1998. Population structure of algicidal marine bacteria targeting Heterosigma akashiwo (Raphidophyceae) through restriction fragment length polymorphism analysis of the bacterial 16S ribosomal RNA genes, during H. akashiwo red tide. Mar. Ecol. Prog. Ser. 170, 33–44.

    Article  Google Scholar 

  • Yoshinaga, I., Kim, M.C., Tsujino, K., Nakajima, M., Yamamoto, K., Uchida, A., and Ishida, Y. 1999. Ribotype analysis of HAKB (Heterosigma akashiwo-killing bacteria) strains isolated during termination period of a H. akashiwo bloom occurred in Osaka Bay. Fish. Sci. 65, 786–787.

    Article  CAS  Google Scholar 

  • Zhang, H., Peng, Y., Zhang, S., Cai, G., Li, Y., Yang, X., Yang, K., Chen, Z., Zhang, J., Wang, H., et al. 2016. Algicidal effects of prodigiosin on the harmful algae Phaeocystis globose. Front. Microbiol. 7, 602.

    PubMed  PubMed Central  Google Scholar 

  • Zhang, S., Zheng, W., and Wang, H. 2020. Physiological response and morphological changes of Heterosigma akashiwo to an algicidal compound prodigiosin. J. Hazard. Mater. 385, 121530.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from NRF (2018R1-D1A1B0705025513), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Joo Son.

Ethics declarations

There are no conflicts of interest in this study.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, SY., Son, HJ. Effects of mycosubtilin homolog algicides from a marine bacterium, Bacillus sp. SY-1, against the harmful algal bloom species Cochlodinium polykrikoides. J Microbiol. 59, 389–400 (2021). https://doi.org/10.1007/s12275-021-1086-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1086-8

Keywords

Navigation