Skip to main content
Log in

Engineering the axial coordination of cobalt single atom catalysts for efficient photocatalytic hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Improving the catalytic activity of non-noble metal single atom catalysts (SACs) has attracted considerable attention in materials science. Although optimizing the local electronic structure of single atom can greatly improve their catalytic activity, it often involves in-plane modulation and requires high temperatures. Herein, we report a novel strategy to manipulate the local electronic structure of SACs via the modulation of axial Co–S bond anchored onto graphitic carbon nitride (C3N4) at room temperature (RT). Each Co atom is bonded to four N atoms and one S atom (Co-(N, S)/C3N4). Owing to the greater electronegativity of S in the Co–S bond, the local electronic structure of the Co atoms is available to be controlled at a relatively moderate level. Consequently, when employed for the photocatalytic hydrogen evolution reaction, the adsorption energy of intermediate hydrogen (H*) on the Co atoms is remarkably low. In the presence of the Co-(N, S)/C3N4 SACs, the hydrogen evolution rates reach up to 10 mmol/(gh), which is nearly 10 and 2.5 times greater than the rates in the presence of previously reported transition metal/C3N4 and noble platinum nanoparticles (PtNPs)/C3N4 catalysts, respectively. Attributed to the tailorable axial Co-S bond in the SAC, the local electronic structure of the Co atoms can be further optimized for other photocatalytic reactions. This axial coordination engineering strategy is universal in catalyst designing and can be used for a variety of photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiang, K.; Siahrostami, S.; Akey, A. J.; Li, Y. B.; Lu, Z. Y.; Lattimer, J.; Hu, Y. F.; Stokes, C.; Gangishetty, M.; Chen, G. X. et al. Transition-metal single atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 2017, 3, 950–960.

    Article  CAS  Google Scholar 

  2. Lu, T. T.; Wang, H. Graphdiyne-supported metal electrocatalysts: From nanoparticles and cluster to single atoms. Nano Res. 2022, 15, 9764–9778.

    Article  CAS  Google Scholar 

  3. Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

    Article  CAS  Google Scholar 

  4. Yuan, S.; Zhang, J. W.; Hu, L. Y.; Li, J. N.; Li, S. W.; Gao, Y. N.; Zhang, Q. H.; Gu, L.; Yang, W. X.; Feng, X. et al. Decarboxylation-induced defects in MOF-derived single cobalt atom@carbon electrocatalysts for efficient oxygen reduction. Angew. Chem., Int. Ed. 2021, 60, 21685–21690.

    Article  CAS  Google Scholar 

  5. Li, L. H.; Liu, X. J.; Wang, J. M.; Liu, R.; Liu, Y. R.; Wang, C. L.; Yang, W. X.; Feng, X.; Wang. B. Atomically dispersed co in a cross-channel hierarchical carbon-based electrocatalyst for high-performance oxygen reduction in Zn-air batteries. J. Mater. Chem. A 2022, 10, 18723–18729.

    Article  CAS  Google Scholar 

  6. Liu, Y. R.; Liu, X. J.; Lv, Z. H.; Liu, R.; Li, L. H.; Wang, J. M.; Yang, W. X.; Jiang, X.; Feng, X.; Wang, B. Tuning the spin state of the iron center by bridge-bonded Fe-O-Ti ligands for enhanced oxygen reduction. Angew. Chem., Int. Ed. 2022, 61, e202117617.

    Article  CAS  Google Scholar 

  7. Johnson, J. A.; Zhang, X.; Reeson, T. C.; Chen, Y. S.; Zhang, J. Facile control of the charge density and photocatalytic activity of an anionic indium porphyrin framework via in situ metalation. J. Am. Chem. Soc. 2014, 136, 15881–15884.

    Article  CAS  PubMed  Google Scholar 

  8. Cao, S. W.; Li, H.; Tong, T.; Chen, H. C.; Yu, A. C.; Yu, J. G.; Chen, H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1802169.

    Article  Google Scholar 

  9. Zhang, W. W.; Zhang, J. Y.; Lan, X.; Chen, Z. Y.; Wang, T. M. Photocatalytic performance of ZnGa2O4 for degradation of methylene blue and its improvement by doping with Cd. Catal. Commun. 2010, 11, 1104–1108.

    Article  CAS  Google Scholar 

  10. Li, Q. H.; Chen, W. X.; Xiao, H.; Gong, Y.; Li, Z.; Zheng, L. R.; Zheng, X. S.; Yan, W. S.; Cheong, W. C.; Shen, R. A. et al. Fe isolated single atoms on S, N codoped carbon by copolymer pyrolysis strategy for highly efficient oxygen reduction reaction. Adv. Mater. 2018, 30, 1800588.

    Article  Google Scholar 

  11. Duan, L. L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L. C. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 2012, 4, 418–423.

    Article  CAS  PubMed  Google Scholar 

  12. Wang, L.; Duan, L. L.; Stewart, B.; Pu, M. P.; Liu, J. H.; Privalov, T.; Sun, L. C. Toward controlling water oxidation catalysis: Tunable activity of ruthenium complexes with axial imidazole/DMSO ligands. J. Am. Chem. Soc. 2012, 134, 18868–18880.

    Article  CAS  PubMed  Google Scholar 

  13. Xiao, M. L.; Gao, L. Q.; Wang, Y.; Wang, X.; Zhu, J. B.; Jin, Z.; Liu, C. P.; Chen, H. Q.; Li, G. R.; Ge, J. J. et al. Engineering energy level of metal center: Ru single-atom site for efficient and durable oxygen reduction catalysis. J. Am. Chem. Soc. 2019, 141, 19800–19806.

    Article  CAS  PubMed  Google Scholar 

  14. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lai, Q. X.; Zheng, L. R.; Liang, Y. Y.; He, J. P.; Zhao, J. X.; Chen, J. H. Metal-organic-framework- derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx sites for advanced oxygen reduction in acid media. ACS Catal. 2017, 7, 1655–1663.

    Article  CAS  Google Scholar 

  16. Liu, X. J.; Liu, Y. R.; Yang, W. X.; Feng, X.; Wang, B. Controlled modification of axial coordination for transition-metal single-atom electrocatalyst. Chem.—Eur. J. 2022, 28, e202201471.

    Article  CAS  PubMed  Google Scholar 

  17. Zhao, L.; Zhang, Y.; Huang, L. B.; Liu, X. Z.; Zhang, Q. H.; He, C.; Wu, Z. Y.; Zhang, L. J.; Wu, J. P.; Yang, W. L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019, 10, 1278.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang, Z. Q.; Chen, Y. G.; Zhou, L. Q.; Chen, C.; Han, Z.; Zhang, B. S.; Wu, Q.; Yang, L. J.; Du, L. Y.; Bu, Y. F. et al. The simplest construction of single-site catalysts by the synergism of micropore trapping and nitrogen anchoring. Nat. Commun. 2019, 10, 1657.

    Article  PubMed  PubMed Central  Google Scholar 

  19. He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Qiao, Y. Y.; Yuan, P. F.; Hu, Y. F.; Zhang, J. N.; Mu, S. C.; Zhou, J. H.; Li, H.; Xia, H. C.; He, J.; Xu, Q. Sulfuration of an Fe-N-C catalyst containing FexC/Fe species to enhance the catalysis of oxygen reduction in acidic media and for use in flexible Zn-air batteries. Adv. Mater. 2018, 30, 1804504.

    Article  Google Scholar 

  21. Shen, H. J.; Gracia-Espino, E.; Ma, J. Y.; Zang, K. T.; Luo, J.; Wang, L.; Gao, S. S.; Mamat, X.; Hu, G. Z.; Wagberg, T. et al. Synergistic effects between atomically dispersed Fe-N-C and C-S-C for the oxygen reduction reaction in acidic media. Angew. Chem., Int. Ed. 2017, 56, 13800–13804.

    Article  CAS  Google Scholar 

  22. Kunitski, M.; Eicke, N.; Huber, P.; Köhler, J.; Zeller, S.; Voigtsberger, J.; Schlott, N.; Henrichs, K.; Sann, H.; Trinter, F. et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun. 2019, 10, 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pu, Z. H.; Zhao, J. H.; Amiinu, I. S.; Li, W. Q.; Wang, M.; He, D. P.; Mu, S. C. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ. Sci. 2019, 12, 952–957.

    Article  CAS  Google Scholar 

  24. Zhang, P.; Wang, T.; Gong, J. L. Current mechanistic understanding of surface reactions over water-splitting photocatalysts. Chem 2018, 4, 223–245.

    Article  CAS  Google Scholar 

  25. Chernyshev, V. M.; Astakhov, A. V.; Chikunov, I. E.; Tyurin, R. V.; Eremin, D. B.; Ranny, G. S.; Khrustalev, V. N.; Ananikov, V. P. Pd and Pt catalyst poisoning in the study of reaction mechanisms: What does the mercury test mean for catalysis? ACS Catal. 2019, 9, 2984–2995.

    Article  CAS  Google Scholar 

  26. Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. M. Carbon-based metalfree catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.

    Article  Google Scholar 

  27. Liu, W. G.; Zhang, L. L.; Yan, W. S.; Liu, X. Y.; Yang, X. F.; Miao, S.; Wang, W. T.; Wang, A. Q.; Zhang, T. Single-atom dispersed Co-N-C catalyst: Structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 2016, 7, 5758–5764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, S. S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050.

    Article  CAS  Google Scholar 

  29. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  PubMed  Google Scholar 

  30. Cao, S. W.; Low, J.; Yu, J. G.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, K.; Chai, Z. G.; Li, C.; Shi, L. R.; Liu, M. X.; Xie, Q.; Zhang, Y. F.; Xu, D. S.; Manivannan, A.; Liu, Z. F. Catalyst-free growth of three-dimensional graphene flakes and graphene/g-C3N4 composite for hydrocarbon oxidation. ACS Nano 2016, 10, 3665–3673.

    Article  CAS  PubMed  Google Scholar 

  32. Lin, L. H.; Yu, Z. Y.; Wang, X. C. Crystalline carbon nitride semiconductors for photocatalytic water splitting. Angew. Chem., Int. Ed. 2019, 58, 6164–6175.

    Article  CAS  Google Scholar 

  33. Jiang, J. X.; Ding, W.; Li, W.; Wei, Z. D. Freestanding single-atom-layer Pd-based catalysts: Oriented splitting of energy bands for unique stability and activity. Chem 2020, 6, 431–447.

    Article  CAS  Google Scholar 

  34. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  35. Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single- atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, P. X.; Zhao, Y.; Qin, R. X.; Mo, S. G.; Chen, G. X.; Gu, L.; Chevrier, D. M.; Zhang, P.; Guo, Q.; Zang, D. D. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 2016, 352, 797–800.

    Article  CAS  PubMed  Google Scholar 

  37. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  38. Jones, J.; Xiong, H. F.; Delarive, A. T.; Peterson, E. J.; Pham, H.; Challa, S. R.; Qi, G.; Oh, S.; Wiebenga, M. H.; Hernandez, X. I. P. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 2016, 353, 150–154.

    Article  CAS  PubMed  Google Scholar 

  39. Wang, Y.; Phua, S. Z. F.; Dong, G.; Liu, X. Q.; He, B.; Zhai, Q. L.; Li, Y. C.; Zheng, C. C.; Quan, H. P.; Li, Z. et al. Structure tuning of polymeric carbon nitride for solar energy conversion: From nano to molecular scale. Chem 2019, 5, 2775–2813.

    Article  CAS  Google Scholar 

  40. Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

    Article  CAS  PubMed  Google Scholar 

  41. Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, G.; Shan, Y.; Hu, Y. Y.; Xu, X. Y.; Long, L. Y.; Zhang, J. L.; Dai, J.; Guo, J. H.; Shen, J. C.; Li, S. et al. Half-metallic carbon nitride nanosheets with micro grid mode resonance structure for efficient photocatalytic hydrogen evolution. Nat. Commun. 2018, 9, 3366.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cao, Y. J.; Chen, S.; Luo, Q. Q.; Yan, H.; Lin, Y.; Liu, W.; Cao, L. L.; Lu, J. L.; Yang, J. L.; Yao, T. et al. Atomic4evel insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem., Int. Ed. 2017, 56, 12191–12196.

    Article  CAS  Google Scholar 

  44. Liu, W.; Cao, L. L.; Cheng, W. R.; Cao, Y. J.; Liu, X. K.; Zhang, W.; Mou, X. L.; Jin, L. L.; Zheng, X. S.; Che, W. et al. Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting. Angew. Chem., Int. Ed. 2017, 56, 9312–9317.

    Article  CAS  Google Scholar 

  45. Arcon, I.; Tuel, A.; Kodre, A.; Martin, G.; Barbier, A. EXAFS determination of the size of Co clusters on silica. J. Synchrotron Rad. 2001, 8, 575–577.

    Article  CAS  Google Scholar 

  46. Yang, H.; Duan, X. H.; Zhao, J. F.; Guo, L. N. Transition-metal-free tandem radical thiocyanooxygenation of olefinic amides: A new route to SCN-containing heterocycles. Org. Lett. 2015, 17, 1998–2001.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, G. X.; Sun, Y. B.; Zhou, W.; Wang, X. K.; Chang, K.; Liu, G. G.; Liu, H. M.; Kako, T.; Ye, J. H. Superior photocatalytic H2 production with cocatalytic Co/Ni species anchored on sulfide semiconductor. Adv. Mater. 2017, 29, 1703258.

    Article  Google Scholar 

  48. Fang, X. Z.; Shang, Q. C.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y. F.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt atoms confined into a metal-organic framework for efficient photocatalysis. Adv. Mater. 2018, 30, 1705112.

    Article  Google Scholar 

  49. Qiao, M.; Liu, J.; Wang, Y.; Li, Y. F.; Chen, Z. F. PdSeO3 monolayer: Promising inorganic 2D photocatalyst for direct overall water splitting without using sacrificial reagents and cocatalysts. J. Am. Chem. Soc. 2018, 140, 12256–12262.

    Article  CAS  PubMed  Google Scholar 

  50. Lopato, E. M.; Eikey, E. A.; Simon, Z. C.; Back, S.; Tran, K.; Lewis, J.; Kowalewski, J. F.; Yazdi, S.; Kitchin, J. R.; Ulissi, Z. W. et al. Parallelized screening of characterized and DFT-modeled bimetallic colloidal cocatalysts for photocatalytic hydrogen evolution. ACS Catal. 2020, 10, 4244–4252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 22008251), Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515010318), and Shenzhen Science and Technology Program (No. JCYJ20220531095813031). The authors thank the Beijing Synchrotron Radiation Facility (beamline 1W1B) for the use of the instruments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Licheng Bai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, N., Liao, L., Zhang, X. et al. Engineering the axial coordination of cobalt single atom catalysts for efficient photocatalytic hydrogen evolution. Nano Res. 17, 5114–5121 (2024). https://doi.org/10.1007/s12274-024-6411-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-024-6411-1

Keywords

Navigation