Skip to main content
Log in

Multifunctional electroactive bio-adhesive for robustly-integrated wound therapy and postoperative wound-status warning and assessment

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Wound abnormalities such as secondary wound laceration and inflammation are common postoperative health hazards during clinical procedures. The continuous treatment, healing induction, and real-time visualization of wound status and complications, including wound re-tearing, inflammation, and morphology, are key focal points for comprehensive healthcare. Herein, an on-demand quadruple energy dissipative strategy was proposed for the nanoengineering of a physically and chemically synergistic double-layer gelatin-based bio-adhesive (DLGel) by combining a multi-network adhesive layer and a versatile electroactive energy dissipative layer based on contrivable interlocking micro-pillar arrays and crosslinked polymer chains. The subtly multiple energy dissipation designs enable DLGel with robust adhesive strength to omnipotently wet and dynamic tissue, providing a basis for reliable wound closure. DLGel achieves comprehensive wound-healing induction through electrical stimulation and possesses reversible underwater light/thermal adhesion, excellent hemostatic performance, outstanding antimicrobial properties, and self-repair capability. Furthermore, a novel deep-learning strategy is creatively established to respond to mechanical deformation due to wound anomalies. This strategy translates biological information into visual graphics, providing real-time early warning and assessment of postoperative wound-abnormality/-morphology, such as laceration, inflammation, and necrosis. Therefore, DLGel and its associated signal collection and processing protocol enable the integration of reliable wound closure, wound healing, and real-time postoperative wound-status warning and assessment within the unobservable and undetectable “black box” regions in a context of non-clinical comprehensive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guan, Y.; Niu, H.; Liu, Z. T.; Dang, Y.; Shen, J.; Zayed, M.; Ma, L.; Guan, J. J. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci. Adv. 2021, 7, eabj0153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlson, M. A. Acute wound failure. Surg. Clin. North Am. 1997, 77, 607–636.

    Article  CAS  PubMed  Google Scholar 

  3. Khamaisi, M.; Katagiri, S.; Keenan, H.; Park, K.; Maeda, Y.; Li, Q.; Qi, W. E.; Thomou, T.; Eschuk, D.; Tellechea, A. et al. PKCδ inhibition normalizes the wound-healing capacity of diabetic human fibroblasts. J. Clin. Invest. 2016, 126, 837–853.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ariyanti, A. D.; Zhang, J. Q.; Marcelina, O.; Nugrahaningrum, D. A.; Wang, G. X.; Kasim, V.; Wu, S. R. Salidroside-pretreated mesenchymal stem cells enhance diabetic wound healing by promoting paracrine function and survival of mesenchymal stem cells under hyperglycemia. Stem Cells Transl. Med. 2019, 8, 404–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho, H.; Blatchley, M. R.; Duh, E. J.; Gerecht, S. Acellular and cellular approaches to improve diabetic wound healing. Adv. Drug. Deliv. Rev. 2019, 146, 267–288.

    Article  CAS  PubMed  Google Scholar 

  6. Haque, S. T.; Saha, S. K.; Haque, M. E.; Biswas, N. Nanotechnology-based therapeutic applications: In vitro and in vivo clinical studies for diabetic wound healing. Biomater. Sci. 2021, 9, 7705–7747.

    Article  CAS  PubMed  Google Scholar 

  7. Wolcott, R. D.; Rhoads, D. D.; Dowd, S. E. Biofilms and chronic wound inflammation. J. Wound Care 2008, 17, 333–341.

    Article  CAS  PubMed  Google Scholar 

  8. Blair, M. J.; Jones, J. D.; Woessner, A. E.; Quinn, K. P. Skin structure-function relationships and the wound healing response to intrinsic aging. Adv. Wound Care 2020, 9, 127–143.

    Article  Google Scholar 

  9. Magaz, A.; Faroni, A.; Gough, J. E.; Reid, A. J.; Li, X.; Blaker, J. J. Bioactive silk-based nerve guidance conduits for augmenting peripheral nerve repair. Adv. Healthc. Mater. 2018, 7, 1800308.

    Article  Google Scholar 

  10. Tao, J.; Zhang, J. M.; Du, T.; Xu, X.; Deng, X. M.; Chen, S. C.; Liu, J. L.; Chen, Y. W.; Liu, X.; Xiong, M. M. et al. Rapid 3D printing of functional nanoparticle-enhanced conduits for effective nerve repair. Acta Biomater. 2019, 90, 49–59.

    Article  CAS  PubMed  Google Scholar 

  11. Rosen, R. D.; Manna, B. Wound Dehiscence; StatPearls Publishing: Treasure Island, 2019.

    Google Scholar 

  12. Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z. et al. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, L. R.; Zhou, M. Y.; Xu, T. L.; Zhang, X. J. Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem. Eng. J. 2022, 433, 134625.

    Article  CAS  Google Scholar 

  14. Derakhshandeh, H.; Kashaf, S. S.; Aghabaglou, F.; Ghanavati, I. O.; Tamayol, A. Smart bandages: The future of wound care. Trends Biotechnol. 2018, 36, 1259–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao, X.; Liang, Y. P.; Huang, Y.; He, J. H.; Han, Y.; Guo, B. L. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 2020, 30, 1910748.

    Article  CAS  Google Scholar 

  16. Ma, Z. W.; Bao, G. Y.; Li, J. Y. Multifaceted design and emerging applications of tissue adhesives. Adv. Mater. 2021, 33, 2007663.

    Article  CAS  Google Scholar 

  17. Bré, L. P.; Zheng, Y.; Pêgo, A. P.; Wang, W. X. Taking tissue adhesives to the future: From traditional synthetic to new biomimetic approaches. Biomater. Sci. 2013, 1, 239–253.

    Article  PubMed  Google Scholar 

  18. Li, M.; Pan, G. Y.; Zhang, H. L.; Guo, B. L. Hydrogel adhesives for generalized wound treatment: Design and applications. J. Polym. Sci. 2022, 60, 1328–1359.

    Article  CAS  Google Scholar 

  19. Du, S.; Zhou, N. Y.; Gao, Y. J.; Xie, G.; Du, H. Y.; Jiang, H.; Zhang, L. B.; Tao, J.; Zhu, J. T. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nanogenerator for promoting skin wound healing. Nano Res. 2020, 13, 2525–2533.

    Article  CAS  Google Scholar 

  20. Liu, B. C.; Wang, Y.; Miao, Y.; Zhang, X. Y.; Fan, Z. X.; Singh, G.; Zhang, X. Y.; Xu, K. G.; Li, B. Y.; Hu, Z. Q. et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with superelasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin. Biomaterials 2018, 171, 83–96.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou, Y.; Wan, C. J.; Yang, Y. S.; Yang, H.; Wang, S. C.; Dai, Z. D.; Ji, K. J.; Jiang, H.; Chen, X. D.; Long, Y. Highly stretchable, elastic, and ionic conductive hydrogel for artificial soft electronics. Adv. Funct. Mater. 2019, 29, 1806220.

    Article  Google Scholar 

  22. Orlov, A.; Lustig, A.; Grigatti, A.; Gefen, A. Fluid handling dynamics and durability of silver-containing gelling fiber dressings tested in a robotic wound system. Adv. Skin Wound Care 2022, 35, 326–334.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Baik, S.; Lee, H. J.; Kim, D. W.; Kim, J. W.; Lee, Y.; Pang, C. Bioinspired adhesive architectures: From skin patch to integrated bioelectronics. Adv. Mater. 2019, 31, 1803309.

    Article  Google Scholar 

  24. Son, D.; Bao, Z. N. Nanomaterials in skin-inspired electronics: Toward soft and robust skin-like electronic nanosystems. ACS Nano 2018, 12, 11731–11739.

    Article  CAS  PubMed  Google Scholar 

  25. Takei, K.; Gao, W.; Wang, C.; Javey, A. Physical and chemical sensing with electronic skin. Proc. IEEE 2019, 107, 2155–2167.

    Article  CAS  Google Scholar 

  26. Wan, Y. B.; Qiu, Z. G.; Huang, J.; Yang, J. Y.; Wang, Q.; Lu, P.; Yang, J. L.; Zhang, J. M.; Huang, S. Y.; Wu, Z. G. et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 2018, 14, 1801657.

    Article  Google Scholar 

  27. Kim, M. H.; Cho, C. H.; Kim, J. S.; Nam, T. U.; Kim, W. S.; Lee, T. I.; Oh, J. Y. Thermoelectric energy harvesting electronic skin (e-skin) Patch with reconfigurable carbon nanotube clays. Nano Energy 2021, 87, 106156.

    Article  CAS  Google Scholar 

  28. Gan, D. L.; Huang, Z. Q.; Wang, X.; Xu, D. J.; Rao, S. Q.; Wang, K. F.; Ren, F. Z.; Jiang, L. L.; Xie, C. M.; Lu, X. Bioadhesive and electroactive hydrogels for flexible bioelectronics and supercapacitors enabled by a redox–active core–shell PEDOT@PZIF-71 system. Mater. Horiz. 2023, 10, 2169–2180.

    Article  CAS  PubMed  Google Scholar 

  29. Xie, C. M.; Luo, J. Q.; Luo, Y. J.; Zhou, J.; Guo, X. C.; Lu, X. Electroactive hydrogels with photothermal/photodynamic effects for effective wound healing assisted by polydopamine-modified graphene oxide. ACS Appl. Mater. Interfaces 2023, 15, 42329–42340.

    Article  CAS  PubMed  Google Scholar 

  30. Pan, G. X.; Li, F. H.; He, S. H.; Li, W. D.; Wu, Q. M.; He, J. J.; Ruan, R. J.; Xiao, Z. X.; Zhang, J.; Yang, H. H. Mussel- and barnacle cement proteins-inspired dual-bionic bioadhesive with repeatable wet-tissue adhesion, multimodal self-healing, and antibacterial capability for nonpressing hemostasis and promoted wound healing. Adv. Funct. Mater. 2022, 32, 2200908.

    Article  CAS  Google Scholar 

  31. Ghobril, C.; Grinstaff, M. W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial. Chem. Soc. Rev. 2015, 44, 1820–1835.

    Article  CAS  PubMed  Google Scholar 

  32. Heinrich, L. A. Future opportunities for bio-based adhesives-advantages beyond renewability. Green Chem. 2019, 21, 1866–1888.

    Article  CAS  Google Scholar 

  33. Jiang, T.; Munguia-Lopez, J. G.; Gu, K.; Bavoux, M. M.; Flores-Torres, S.; Kort-Mascort, J.; Grant, J.; Vijayakumar, S.; De Leon-Rodriguez, A.; Ehrlicher, A. J. et al. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Biofabrication 2019, 12, 015024.

    Article  PubMed  Google Scholar 

  34. Liang, J.; Guo, Z. C.; Timmerman, A.; Grijpma, D.; Poot, A. Enhanced mechanical and cell adhesive properties of photocrosslinked PEG hydrogels by incorporation of gelatin in the networks. Biomed. Mater. 2019, 14, 024102.

    Article  CAS  PubMed  Google Scholar 

  35. Sani, E. S.; Lara, R. P.; Aldawood, Z.; Bassir, S. H.; Nguyen, D.; Kantarci, A.; Intini, G.; Annabi, N. An antimicrobial dental light curable bioadhesive hydrogel for treatment of peri-implant diseases. Matter 2019, 1, 926–944.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ke, X.; Dong, Z. Y.; Tang, S. X.; Chu, W. L.; Zheng, X. R.; Zhen, L.; Chen, X. Y.; Ding, C. M.; Luo, J.; Li, J. S. A natural polymer based bioadhesive with self-healing behavior and improved antibacterial properties. Biomater. Sci. 2020, 8, 4346–4357.

    Article  CAS  PubMed  Google Scholar 

  37. Mosleh, Y.; de Zeeuw, W.; Nijemeisland, M.; Bijleveld, J. C.; van Duin, P.; Poulis, J. A. The structure–property correlations in dry gelatin adhesive films. Adv. Eng. Mater. 2021, 23, 2000716.

    Article  CAS  Google Scholar 

  38. Pei, X. J.; Wang, J. T.; Cong, Y.; Fu, J. Recent progress in polymer hydrogel bioadhesives. J. Polym. Sci. 2021, 59, 1312–1337.

    Article  CAS  Google Scholar 

  39. Tang, X. D.; Wang, X. M.; Sun, Y. H.; Zhao, L.; Li, D. W.; Zhang, J. H.; Sun, H. C.; Yang, B. Magnesium oxide-assisted dual-crosslinking bio-multifunctional hydrogels for wound repair during full-thickness skin Injuries. Adv. Funct. Mater. 2021, 31, 2105718.

    Article  CAS  Google Scholar 

  40. Saleh, B.; Dhaliwal, H. K.; Portillo-Lara, R.; Shirzaei Sani, E.; Abdi, R.; Amiji, M. M.; Annabi, N. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing. Small 2019, 15, 1902232.

    Article  Google Scholar 

  41. Shirzaei Sani, E.; Kheirkhah, A.; Rana, D.; Sun, Z. M.; Foulsham, W.; Sheikhi, A.; Khademhosseini, A.; Dana, R.; Annabi, N. Sutureless repair of corneal injuries using naturally derived bioadhesive hydrogels. Sci. Adv. 2019, 5, eaav1281.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Trujillo-de Santiago, G.; Sharifi, R.; Yue, K.; Sani, E. S.; Kashaf, S. S.; Alvarez, M. M.; Leijten, J.; Khademhosseini, A.; Dana, R.; Annabi, N. Ocular adhesives: Design, chemistry, crosslinking mechanisms, and applications. Biomaterials 2019, 197, 345–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Han, N.; Xu, Z. Y.; Cui, C. Y.; Li, Y.; Zhang, D. F.; Xiao, M.; Fan, C. C.; Wu, T. L.; Yang, J. H.; Liu, W. G. A Fe3+-crosslinked pyrogallol-tethered gelatin adhesive hydrogel with antibacterial activity for wound healing. Biomater. Sci. 2020, 8, 3164–3172.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, J.; Wang, D.; Wang, L. H.; Liu, W. J.; Chiu, A.; Shariati, K.; Liu, Q. S.; Wang, X.; Zhong, Z.; Webb, J. et al. An adhesive hydrogel with “load-sharing” effect as tissue bandages for drug and cell delivery. Adv. Mater. 2020, 32, 2001628.

    Article  CAS  Google Scholar 

  45. Ge, L. P.; Chen, S. X. Recent advances in tissue adhesives for clinical medicine. Polymers 2020, 12, 939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharifi, S.; Islam, M. M.; Sharifi, H.; Islam, R.; Koza, D.; Reyes-Ortega, F.; Alba-Molina, D.; Nilsson, P. H.; Dohlman, C. H.; Mollnes, T. E. et al. Tuning gelatin-based hydrogel towards bioadhesive ocular tissue engineering applications. Bioact. Mater. 2021, 6, 3947–3961.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, Y. W.; King, D. R.; Sun, T. L.; Nonoyama, T.; Kurokawa, T.; Nakajima, T.; Gong, J. P. Energy-dissipative matrices enable synergistic toughening in fiber reinforced soft composites. Adv. Funct. Mater. 2017, 27, 1605350.

    Article  Google Scholar 

  48. Kim, J.; Kim, D. W.; Baik, S.; Hwang, G. W.; Kim, T. I.; Pang, C. Snail-inspired dry adhesive with embedded microstructures for enhancement of energy dissipation. Adv. Mater. Technol. 2019, 4, 1900316.

    Article  CAS  Google Scholar 

  49. Liu, Z. X.; Liang, G. J.; Zhan, Y. X.; Li, H. F.; Wang, Z. F.; Ma, L. T.; Wang, Y. K.; Niu, X. R.; Zhi, C. Y. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte. Nano Energy 2019, 58, 732–742.

    Article  CAS  Google Scholar 

  50. Lei, H.; Fan, D. D. Conductive, adaptive, multifunctional hydrogel combined with electrical stimulation for deep wound repair. Chem. Eng. J. 2021, 421, 129578.

    Article  CAS  Google Scholar 

  51. Liang, Y. P.; He, J. H.; Guo, B. L. Functional hydrogels as wound dressing to enhance wound healing. ACS Nano 2021, 15, 12687–12722.

    Article  CAS  PubMed  Google Scholar 

  52. Fan, L.; Xiao, C. R.; Guan, P. F.; Zou, Y.; Wen, H. Q.; Liu, C.; Luo, Y. A.; Tan, G. X.; Wang, Q. Y.; Li, Y. F. et al. Extracellular matrix-based conductive interpenetrating network hydrogels with enhanced neurovascular regeneration properties for diabetic wounds repair. Adv. Healthc. Mater. 2022, 11, 2101556.

    Article  CAS  Google Scholar 

  53. Zhang, Q.; Liu, X.; Duan, L. J.; Gao, G. H. Ulta-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels. Chem. Eng. J. 2019, 365, 10–19.

    Article  CAS  Google Scholar 

  54. Chen, K.; Wu, Z. H.; Liu, Y. T.; Yuan, Y.; Liu, C. S. Injectable double-crosslinked adhesive hydrogels with high mechanical resilience and effective energy dissipation for joint wound treatment. Adv. Funct. Mater. 2022, 32, 2109687.

    Article  CAS  Google Scholar 

  55. Yang, J. W.; Bai, R. B.; Chen, B. H.; Suo, Z. G. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 2020, 30, 1901693.

    Article  CAS  Google Scholar 

  56. Qian, C.; Higashigaki, T.; Asoh, T. A.; Uyama, H. Anisotropic conductive hydrogels with high water content. ACS Appl. Mater. Interfaces 2020, 12, 27518–27525.

    Article  CAS  PubMed  Google Scholar 

  57. Baidya, A.; Ghovvati, M.; Lu, C.; Naghsh-Nilchi, H.; Annabi, N. Designing a nitro-induced sutured biomacromolecule to engineer electroconductive adhesive hydrogels. ACS Appl. Mater. Interfaces 2022, 14, 49483–49494.

    Article  CAS  Google Scholar 

  58. Park, H. K.; Lee, D.; Lee, H.; Hong, S. A nature-inspired protective coating on soft/wet biomaterials for SEM by aerobic oxidation of polyphenols. Mater. Horiz. 2020, 7, 1387–1396.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Fellowship of China Postdoctoral Science Foundation (No. 2023M732159), the National Natural Science Foundation of China (Nos. 22308209 and 2207081675), Key R&D Program of Shaanxi Province (No. 2022GY-272), and Young Talent Support Program Project of Shaanxi University Science and Technology Association (No. 20200424).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuechuan Wang or Xinhua Liu.

Electronic Supplementary Material

12274_2023_6384_MOESM1_ESM.pdf

Multifunctional electroactive bio-adhesive for robustly-integrated wound therapy and postoperative wound-status warning and assessment

Supplementary material, approximately 6.67 MB.

Supplementary material, approximately 917 KB.

Supplementary material, approximately 6.70 MB.

Supplementary material, approximately 3.59 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, O., Wang, X., Hou, M. et al. Multifunctional electroactive bio-adhesive for robustly-integrated wound therapy and postoperative wound-status warning and assessment. Nano Res. 17, 4359–4370 (2024). https://doi.org/10.1007/s12274-023-6384-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6384-5

Keywords

Navigation