Skip to main content
Log in

Interlayer exciton dynamics of transition metal dichalcogenide heterostructures under electric fields

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stacking single layers of atoms on top of each other provides a fundamental way to achieve novel material systems and engineer their physical properties, which offers opportunities for exploring fundamental physics and realizing next-generation optoelectronic devices. Among the two-dimensional (2D)-stacked systems, transition metal dichalcogenide (TMDC) heterostructures are particularly attractive because they host tightly-bonded interlayer excitons which possess various novel and appealing properties. These interlayer excitons have drawn significant research attention and hold high potential for the application in unique optoelectronic devices, such as polarization- and wavelength-tunable single photon emitters, valley Hall transistors, and possible high-temperature superconductors. The development of these devices requires a comprehensive understanding of the fundamental properties of these interlayer excitons and the impact of electric fields on their behaviors. In this review, we summarize the recent advances on the understanding of interlayer exciton dynamics under electric fields in TMDC heterostructures. We put emphasis on the electrical modulation of interlayer excitons’ emission, the valley Hall transport of charge carriers after the separation of interlayer excitons by an electric field, and the correlation physics of interlayer excitons and charges under electrical doping and tuning. Challenges and perspectives are finally discussed for the application of TMDC heterostructures in future optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    Article  CAS  PubMed  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  CAS  PubMed  Google Scholar 

  3. Park, J. M.; Cao, Y.; Xia, L. Q.; Sun, S. W.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Robust superconductivity in magic-angle multilayer graphene family. Nat. Mater. 2022, 21, 877–883.

    Article  CAS  PubMed  Google Scholar 

  4. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  PubMed  Google Scholar 

  5. Li, M. Y.; Chen, C. H.; Shi, Y. M.; Li, L. J. Heterostructures based on two-dimensional layered materials and their potential applications. Mater. Today 2016, 19, 322–335.

    Article  Google Scholar 

  6. Wu, Y. C.; Li, D. F.; Wu, C. L.; Hwang, H. Y.; Cui, Y. Electrostatic gating and intercalation in 2D materials. Nat. Rev. Mater. 2023, 8, 41–53.

    Article  Google Scholar 

  7. Sierra, J. F.; Fabian, J.; Kawakami, R. K.; Roche, S.; Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 2021, 16, 856–868.

    Article  CAS  PubMed  Google Scholar 

  8. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  PubMed  Google Scholar 

  9. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494–498.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204.

    Article  CAS  PubMed  Google Scholar 

  11. He, K. L.; Kumar, N.; Zhao, L.; Wang, Z. F.; Mak, K. F.; Zhao, H.; Shan, J. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803.

    Article  CAS  PubMed  Google Scholar 

  12. Charbonneau, S.; Thewalt, M. L. W.; Koteles, E. S.; Elman, B. Transformation of spatially direct to spatially indirect excitons in coupled double quantum wells. Phys. Rev. B 1988, 38, 6287–6290.

    Article  CAS  Google Scholar 

  13. Butov, L. V. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys.: Condens. Matter 2004, 16, R1577–R1613.

    CAS  Google Scholar 

  14. Butov, L. V. Cold exciton gases in coupled quantum well structures. J. Phys.: Condens. Matter 2007, 19, 295202.

    CAS  PubMed  Google Scholar 

  15. Butov, L. V.; Gossard, A. C.; Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 2002, 418, 751–754.

    Article  CAS  PubMed  Google Scholar 

  16. High, A. A.; Leonard, J. R.; Hammack, A. T.; Fogler, M. M.; Butov, L. V.; Kavokin, A. V.; Campman, K. L.; Gossard, A. C. Spontaneous coherence in a cold exciton gas. Nature 2012, 483, 584–588.

    Article  CAS  PubMed  Google Scholar 

  17. Smolka, S.; Wuester, W.; Haupt, F.; Faelt, S.; Wegscheider, W.; Imamoglu, A. Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas. Sciecee 2014, 346, 332–335.

    CAS  Google Scholar 

  18. Wu, Z.; Zhang, L.; Sun, W.; Xu, X. T.; Wang, B. Z.; Ji, S. C.; Deng, Y. J.; Chen, S.; Liu, X. J.; Pan, J. W. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science 2016, 354, 83–88.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X. M.; Watanabe, K.; Taniguchi, T.; Halperin, B. I.; Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 2017, 13, 746–750.

    Article  CAS  Google Scholar 

  20. Lagoin, C.; Dubin, F. Key role of the moiré potential for the quasicondensation of interlayer excitons in van der Waals heterostructures. Phys. Rev. B 2021, 103, L041406.

    Article  CAS  Google Scholar 

  21. Yankowitz, M.; Xue, J. M.; Cormode, D.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Jacquod, P.; LeRoy, B. J. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 2012, 8, 382–386.

    Article  CAS  Google Scholar 

  22. Ponomarenko, L. A.; Gorbachev, R. V.; Yu, G. L.; Elias, D. C.; Jalil, R.; Patel, A. A.; Mishchenko, A.; Mayorov, A. S.; Woods, C. R.; Wallbank, J. R. et al. Cloning of Dirac fermions in graphene superlattices. Nature 2013, 497, 594–597.

    Article  CAS  PubMed  Google Scholar 

  23. Yu, H. Y.; Liu, G. B.; Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 2018, 5, 035021.

    Article  Google Scholar 

  24. Zhang, Z. M.; Wang, Y. M.; Watanabe, K.; Taniguchi, T.; Ueno, K.; Tutuc, E.; LeRoy, B. J. Flat bands in twisted bilayer transition metal dichalcogenides. Nat. Phys. 2020, 16, 1093–1096.

    Article  CAS  Google Scholar 

  25. Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.

    Article  CAS  PubMed  Google Scholar 

  26. Yang, L. L.; Yuan, Y.; Fu, B. W.; Yang, J. N.; Dai, D. J.; Shi, S. S.; Yan, S.; Zhu, R.; Han, X.; Li, H. C. et al. Revealing broken valley symmetry of quantum emitters in WSe2 with chiral nanocavities. Nat. Commun. 2023, 14, 4265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, K. C.; Pazos, S.; Aguirre, F.; Shen, Y. Q.; Yuan, Y.; Zheng, W. W.; Alharbi, O.; Villena, M. A.; Fang, B.; Li, X. Y. et al. Hybrid 2D-CMOS microchips for memristive applications. Nature 2023, 618, 57–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Joe, A. Y.; Jauregui, L. A.; Pistunova, K.; Mier Valdivia, A. M.; Lu, Z. G.; Wild, D. S.; Scuri, G.; De Greve, K.; Gelly, R. J.; Zhou, Y. et al. Electrically controlled emission from singlet and triplet exciton species in atomically thin light-emitting diodes. Phys. Rev. B 2021, 103, L161411.

    Article  CAS  Google Scholar 

  29. Li, X. T.; Liu, Z. D.; Liu, Y. H.; Karki, S.; Li, X. Q.; Akinwande, D.; Incorvia, J. A. C. All-electrical control and temperature dependence of the spin and valley hall effect in monolayer WSe2 transistors. ACS Appl. Electron. Mater. 2022, 4, 3930–3937.

    Article  CAS  Google Scholar 

  30. Jiang, C. Y.; Rasmita, A.; Ma, H.; Tan, Q. H.; Zhang, Z. W.; Huang, Z. M.; Lai, S.; Wang, N. Z.; Liu, S.; Liu, X. et al. A room-temperature gate-tunable bipolar valley Hall effect in molybdenum disulfide/tungsten diselenide heterostructures. Nat. Electron. 2022, 5, 23–27.

    Article  CAS  Google Scholar 

  31. Tan, Q. H.; Rasmita, A.; Zhang, Z. W.; Cai, H. B.; Cai, X. B.; Dai, X. R.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Gao, W. B. Layer-dependent correlated phases in WSe2/MoS2 moiré superlattice. Nat. Mater. 2023, 22, 605–611.

    Article  CAS  PubMed  Google Scholar 

  32. Dong, R.; Kuljanishvili, I. Review Article: Progress in fabrication of transition metal dichalcogenides heterostructure systems. J. Vac. Sci. Technol. B 2017, 35, 030803.

    Article  Google Scholar 

  33. Guo, H. W.; Hu, Z.; Liu, Z. B.; Tian, J. G. Stacking of 2D materials. Adv. Funct. Mater. 2021, 31, 2007810.

    Article  CAS  Google Scholar 

  34. Rani, S.; Sharma, M.; Verma, D.; Ghanghass, A.; Bhatia, R.; Sameera, I. Two-dimensional transition metal dichalcogenides and their heterostructures: Role of process parameters in top-down and bottom-up synthesis approaches. Mater. Sci. Semicond. Process. 2022, 139, 106313.

    Article  CAS  Google Scholar 

  35. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    Article  CAS  PubMed  Google Scholar 

  36. Lin, Y. C.; Ghosh, R. K.; Addou, R.; Lu, N.; Eichfeld, S. M.; Zhu, H.; Li, M. Y.; Peng, X.; Kim, M. J.; Li, L. J. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 2015, 6, 7311.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, Z. W.; Huang, Z. W.; Li, J.; Wang, D.; Lin, Y.; Yang, X. D.; Liu, H.; Liu, S.; Wang, Y. L.; Li, B. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 2022, 17, 493–499.

    Article  CAS  PubMed  Google Scholar 

  38. Jin, G.; Lee, C. S.; Okello, O. F. N.; Lee, S. H.; Park, M. Y.; Cha, S.; Seo, S. Y.; Moon, G.; Min, S. Y.; Yang, D. H. et al. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol. 2021, 16, 1092–1098.

    Article  CAS  PubMed  Google Scholar 

  39. Kang, J.; Tongay, S.; Zhou, J.; Li, J. B.; Wu, J. Q. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 2013, 102, 012111.

    Article  Google Scholar 

  40. Wang, G.; Chernikov, A.; Glazov, M. M.; Heinz, T. F.; Marie, X.; Amand, T.; Urbaszek, B. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 2018, 90, 021001.

    Article  CAS  Google Scholar 

  41. Wilson, N. R.; Nguyen, P. V.; Seyler, K.; Rivera, P.; Marsden, A. J.; Laker, Z. P. L.; Constantinescu, G. C.; Kandyba, V.; Barinov, A.; Hine, N. D. M. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 2017, 3, e1601832.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chiu, M. H.; Zhang, C. D.; Shiu, H. W.; Chuu, C. P.; Chen, C. H.; Chang, C. Y. S.; Chen, C. H.; Chou, M. Y.; Shih, C. K.; Li, L. J. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nat. Commun. 2015, 6, 7666.

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

    Article  CAS  Google Scholar 

  44. Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590–5597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong, X. P.; Kim, J.; Shi, S. F.; Zhang, Y.; Jin, C. H.; Sun, Y. H.; Tongay, S.; Wu, J. Q.; Zhang, Y. F.; Wang, F. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 2014, 9, 682–686.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu, H. M.; Wang, J.; Gong, Z. Z.; Kim, Y. D.; Hone, J.; Zhu, X. Y. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der waals heterojunctions. Nano Lett. 2017, 17, 3591–3598.

    Article  CAS  PubMed  Google Scholar 

  47. Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 2017, 17, 5229–5237.

    Article  CAS  PubMed  Google Scholar 

  49. Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Probing charge transfer excitons in a MoSe2-WS2 van der Waals heterostructure. Nanoscale 2015, 7, 17523–17528.

    Article  CAS  PubMed  Google Scholar 

  50. Hill, H. M.; Rigosi, A. F.; Rim, K. T.; Flynn, G. W.; Heinz, T. F. Band alignment in MoS2/WS2 transition metal dichalcogenide heterostructures probed by scanning tunneling microscopy and spectroscopy. Nano Lett. 2016, 16, 4831–4837.

    Article  CAS  PubMed  Google Scholar 

  51. Chaves, A.; Azadani, J. G.; Özçelik, V. O.; Grassi, R.; Low, T. Electrical control of excitons in van der Waals heterostructures with type-II band alignment. Phys. Rev. B 2018, 98, 121302.

    Article  CAS  Google Scholar 

  52. Zhu, M. Q.; Zhang, Z. N.; Zhang, T.; Liu, D. D.; Zhang, H.; Zhang, Z. X.; Li, Z. L.; Cheng, Y. C.; Huang, W. Exchange between interlayer and intralayer exciton in WSe2/WS2 heterostructure by interlayer coupling engineering. Nano Lett. 2022, 22, 4528–4534.

    Article  CAS  PubMed  Google Scholar 

  53. Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

    Article  CAS  Google Scholar 

  54. Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N. D.; Fal’ko, V. kp theory for two-dimensional transition metal dichalcogenide semiconductors. 2D Mater. 2015, 2, 022001

    Article  Google Scholar 

  55. Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

    Article  PubMed  Google Scholar 

  56. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 2012, 7, 490–493.

    Article  CAS  PubMed  Google Scholar 

  57. Liu, H. J.; Jiao, L.; Xie, L.; Yang, F.; Chen, J. L.; Ho, W. K.; Gao, C. L.; Jia, J. F.; Cui, X. D.; Xie, M. H. Molecular-beam epitaxy of monolayer and bilayer WSe2: A scanning tunneling microscopy/spectroscopy study and deduction of exciton binding energy. 2D Mater. 2015, 2, 034004.

    Article  Google Scholar 

  58. Mann, J.; Ma, Q.; Odenthal, P. M.; Isarraraz, M.; Le, D.; Preciado, E.; Barroso, D.; Yamaguchi, K.; von Son Palacio, G.; Nguyen, A. et al. 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1−x)Se2x monolayers. Adv. Mater 2014, 26, 1399–1404

    Article  CAS  PubMed  Google Scholar 

  59. Zeng, H. L.; Cui, X. D. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2629–2642.

    Article  CAS  PubMed  Google Scholar 

  60. Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.

    Article  Google Scholar 

  61. Yu, H. Y.; Cui, X. D.; Xu, X. D.; Yao, W. Valley excitons in two-dimensional semiconductors. Natl. Sci. Rev. 2015, 2, 57–70.

    Article  CAS  Google Scholar 

  62. Kenkre, V. M. Theory of exciton annihilation in molecular crystals. Phys. Rev. B 1980, 22, 2089–2098.

    Article  CAS  Google Scholar 

  63. Qiu, D. Y.; da Jornada, F. H.; Louie, S. G. Optical spectrum of MoS2: Many-body effects and diversity of exciton states. Phys. Rev. Lett. 2013, 111, 216805.

    Article  PubMed  Google Scholar 

  64. Ye, Z. L.; Cao, T.; O’Brien, K.; Zhu, H.Y.; Yin, X. B.; Wang, Y.; Louie, S. G.; Zhang, X. Probing excitonic dark states in single-layer tungsten disulphide. Nature 2014, 513, 214–218.

    Article  CAS  PubMed  Google Scholar 

  65. Paik, E. Y.; Zhang, L.; Burg, G. W.; Gogna, R.; Tutuc, E.; Deng, H. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures. Nature 2019, 576, 80–84.

    Article  CAS  PubMed  Google Scholar 

  66. Regan, E. C.; Wang, D. Q.; Paik, E. Y.; Zeng, Y. X.; Zhang, L.; Zhu, J. H.; MacDonald, A. H.; Deng, H.; Wang, F. Emerging exciton physics in transition metal dichalcogenide heterobilayers. Nat. Rev. Mater. 2022, 7, 778–795.

    Article  CAS  Google Scholar 

  67. Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2018, 2, 29.

    Article  Google Scholar 

  68. Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

    Article  CAS  PubMed  Google Scholar 

  69. Mak, K. F.; Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 2022, 17, 686–695.

    Article  CAS  PubMed  Google Scholar 

  70. Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

    Article  CAS  PubMed  Google Scholar 

  71. Jiang, C. Y.; Xu, W. G.; Rasmita, A.; Huang, Z. M.; Li, K.; Xiong, Q. H.; Gao, W. B. Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures. Nat. Commun. 2018, 9, 753.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Palummo, M.; Bernardi, M.; Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 2015, 15, 2794–2800.

    Article  CAS  PubMed  Google Scholar 

  73. Baranowski, M.; Surrente, A.; Klopotowski, L.; Urban, J. M.; Zhang, N.; Maude, D. K.; Wiwatowski, K.; Mackowski, S.; Kung, Y. C.; Dumcenco, D. et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett. 2017, 17, 6360–6365.

    Article  CAS  PubMed  Google Scholar 

  74. Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl. Acad. Sci. USA 2014, 111, 6198–6202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Latini, S.; Winther, K. T.; Olsen, T.; Thygesen, K. S. Interlayer excitons and band alignment in MoS2/hBN/WSe2 van der Waals heterostructures. Nano Lett. 2017, 17, 938–945.

    Article  CAS  PubMed  Google Scholar 

  76. Torun, E.; Miranda, H. P. C.; Molina-Sánchez, A.; Wirtz, L. Interlayer and intralayer excitons in MoS2/WS2 and MoSe2/WSe2 heterobilayers. Phys. Rev. B 2018, 97, 245427.

    Article  CAS  Google Scholar 

  77. Andrei, E. Y.; Efetov, D. K.; Jarillo-Herrero, P.; MacDonald, A. H.; Mak, K. F.; Senthil, T.; Tutuc, E.; Yazdani, A.; Young, A. F. The marvels of moiré materials. Nat. Rev. Mater. 2021, 6, 201–206.

    Article  CAS  Google Scholar 

  78. Ribeiro-Palau, R.; Zhang, C. J.; Watanabe, K.; Taniguchi, T.; Hone, J.; Dean, C. R. Twistable electronics with dynamically rotatable heterostructures. Science 2018, 361, 690–693.

    Article  CAS  Google Scholar 

  79. Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jin, C. H.; Regan, E. C.; Yan, A. M.; Iqbal Bakti Utama, M.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

    Article  CAS  PubMed  Google Scholar 

  81. Kumar, A.; Yagodkin, D.; Stetzuhn, N.; Kovalchuk, S.; Melnikov, A.; Elliott, P.; Sharma, S.; Gahl, C.; Bolotin, K. I. Spin/valley coupled dynamics of electrons and holes at the MoS2–MoSe2 interface. Nano Lett. 2021, 21, 7123–7130.

    Article  CAS  PubMed  Google Scholar 

  82. Heo, H.; Sung, J. H.; Jin, G.; Ahn, J. H.; Kim, K.; Lee, M. J.; Cha, S.; Choi, H.; Jo, M. H. Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 2015, 27, 3803–3810.

    Article  CAS  PubMed  Google Scholar 

  83. Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Ultraflat graphene. Nature 2009, 462, 339–341.

    Article  CAS  PubMed  Google Scholar 

  84. Rosenberger, M. R.; Chuang, H. J.; Phillips, M.; Oleshko, V. P.; McCreary, K. M.; Sivaram, S. V.; Hellberg, C. S.; Jonker, B. T. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 4550–4558.

    Article  CAS  PubMed  Google Scholar 

  85. Weston, A.; Zou, Y. C.; Enaldiev, V.; Summerfield, A.; Clark, N.; Zolyomi, V.; Graham, A.; Yelgel, C.; Magorrian, S.; Zhou, M. W. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2020, 15, 592–597.

    Article  CAS  PubMed  Google Scholar 

  86. Li, E.; Hu, J. X.; Feng, X. M.; Zhou, Z. S.; An, L. H.; Law, K. T.; Wang, N.; Lin, N. Lattice reconstruction induced multiple ultra-flat bands in twisted bilayer WSe2. Nat. Commun. 2021, 12, 5601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Andersen, T. I.; Scuri, G.; Sushko, A.; De Greve, K.; Sung, J.; Zhou, Y.; Wild, D. S.; Gelly, R. J.; Heo, H.; Bérubé, D. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 2021, 20, 480–487.

    Article  CAS  PubMed  Google Scholar 

  88. Li, H. Y.; Li, S. W.; Naik, M. H.; Xie, J. X.; Li, X. Y.; Wang, J. Y.; Regan, E.; Wang, D. Q.; Zhao, W. Y.; Zhao, S. H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 2021, 20, 945–950.

    Article  CAS  PubMed  Google Scholar 

  89. Zhang, C. D.; Chuu, C. P.; Ren, X. B.; Li, M. Y.; Li, L. J.; Jin, C. H.; Chou, M. Y.; Shih, C. K. Interlayer couplings, moiré patterns, and 2D electronic superlattices in MoS2/WSe2 hetero-bilayers. Sci. Adv. 2017, 3, e1601459.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.

    Article  CAS  PubMed  Google Scholar 

  91. Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.

    Article  CAS  PubMed  Google Scholar 

  92. Mahdikhanysarvejahany, F.; Shanks, D. N.; Muccianti, C.; Badada, B. H.; Idi, I.; Alfrey, A.; Raglow, S.; Koehler, M. R.; Mandrus, D. G.; Taniguchi, T. et al. Temperature dependent moiré trapping of interlayer excitons in MoSe2–WSe2 heterostructures. npj 2D Mater. Appl. 2021, 5, 67.

    Article  CAS  Google Scholar 

  93. Baek, H.; Brotons-Gisbert, M.; Koong, Z. X.; Campbell, A.; Rambach, M.; Watanabe, K.; Taniguchi, T.; Gerardot, B. D. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 2020, 6, eaba8526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 2017, 11, 4041–4050.

    Article  CAS  PubMed  Google Scholar 

  95. Regan, E. C.; Wang, D. Q.; Jin, C. H.; Bakti Utama, M. I.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.

    Article  CAS  PubMed  Google Scholar 

  96. Cho, C.; Wong, J.; Taqieddin, A.; Biswas, S.; Aluru, N. R.; Nam, S.; Atwater, H. A. Highly strain-tunable interlayer excitons in MoSe2/WSe2 heterobilayers. Nano Lett. 2021, 21, 3956–3964.

    Article  CAS  PubMed  Google Scholar 

  97. Tang, Y. H.; Gu, J.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Mak, K. F.; Shan, J. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 2021, 16, 52–57.

    Article  CAS  PubMed  Google Scholar 

  98. Jauregui, L. A.; Joe, A. Y.; Pistunova, K.; Wild, D. S.; High, A. A.; Zhou, Y.; Scuri, G.; De Greve, K.; Sushko, A.; Yu, C. H. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 2019, 366, 870–875.

    Article  CAS  PubMed  Google Scholar 

  99. Ciarrocchi, A.; Unuchek, D.; Avsar, A.; Watanabe, K.; Taniguchi, T.; Kis, A. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 2019, 13, 131–136.

    Article  CAS  PubMed  Google Scholar 

  100. Ruiz-Tijerina, D. A.; Fal’ko, V. I. Interlayer hybridization and moiré superlattice minibands for electrons and excitons in heterobilayers of transition-metal dichalcogenides. Phys. Rev. B 2019, 99, 125424.

    Article  CAS  Google Scholar 

  101. Zhang, L.; Zhang, Z.; Wu, F. C.; Wang, D. Q.; Gogna, R.; Hou, S. C.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T. et al. Twistangle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 2020, 11, 5888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hsu, W. T.; Lin, B. H.; Lu, L. S.; Lee, M. H.; Chu, M. W.; Li, L. J.; Yao, W.; Chang, W. H.; Shih, C. K. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Sci. Adv. 2019, 5, eaax7407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Yang, M.; Ren, L.; Robert, C.; Van Tuan, D.; Lombez, L.; Urbaszek, B.; Marie, X.; Dery, H. Relaxation and darkening of excitonic complexes in electrostatically doped monolayer WSe2: Roles of exciton-electron and trion-electron interactions. Phys. Rev. B 2022, 105, 085302.

    Article  CAS  Google Scholar 

  104. Wang, X.; Zhu, J. Y.; Seyler, K. L.; Rivera, P.; Zheng, H. Y.; Wang, Y. Q.; He, M. H.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 2021, 16, 1208–1213.

    Article  CAS  PubMed  Google Scholar 

  105. Liu, E. F.; Barré, E.; van Baren, J.; Wilson, M.; Taniguchi, T.; Watanabe, K.; Cui, Y. T.; Gabor, N. M.; Heinz, T. F.; Chang, Y. C. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 2021, 594, 46–50.

    Article  CAS  PubMed  Google Scholar 

  106. Brotons-Gisbert, M.; Baek, H.; Campbell, A.; Watanabe, K.; Taniguchi, T.; Gerardot, B. D. Moiré-trapped interlayer trions in a charge-tunable WSe2/MoSe2 heterobilayer. Phys. Rev. X 2021, 11, 031033.

    CAS  Google Scholar 

  107. Bondarev, I. V.; Vladimirova, M. R. Complexes of dipolar excitons in layered quasi-two-dimensional nanostructures. Phys. Rev. B 2018, 97, 165419.

    Article  CAS  Google Scholar 

  108. Calman, E. V.; Fowler-Gerace, L. H.; Choksy, D. J.; Butov, L. V.; Nikonov, D. E.; Young, I. A.; Hu, S.; Mishchenko, A.; Geim, A. K. Indirect excitons and trions in MoSe2/WSe2 van der Waals heterostructures. Nano Lett. 2020, 20, 1869–1875.

    Article  CAS  PubMed  Google Scholar 

  109. Wang, T. M.; Miao, S. N.; Li, Z. P.; Meng, Y. Z.; Lu, Z. G.; Lian, Z.; Blei, M.; Taniguchi, T.; Watanabe, K.; Tongay, S. et al. Giant Valley-zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 2020, 20, 694–700.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang, L.; Gogna, R.; Burg, G. W.; Horng, J.; Paik, E.; Chou, Y. H.; Kim, K.; Tutuc, E.; Deng, H. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 2019, 100, 041402.

    Article  CAS  Google Scholar 

  111. Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 2014, 4, 011034.

    Google Scholar 

  112. Hanbicki, A. T.; Chuang, H. J.; Rosenberger, M. R.; Hellberg, C. S.; Sivaram, S. V.; McCreary, K. M.; Mazin, I. I.; Jonker, B. T. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 2018, 12, 4719–4726.

    Article  CAS  PubMed  Google Scholar 

  113. Liu, G. B.; Shan, W. Y.; Yao, Y. G.; Yao, W.; Xiao, D. Three-band tight-binding model for monolayers of group-VIB transition metal dichalcogenides. Phys. Rev. B 2013, 88, 085433.

    Article  Google Scholar 

  114. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Article  PubMed  Google Scholar 

  115. Delhomme, A.; Vaclavkova, D.; Slobodeniuk, A.; Orlita, M.; Potemski, M.; Basko, D. M.; Watanabe, K.; Taniguchi, T.; Mauro, D.; Barreteau, C. et al. Flipping exciton angular momentum with chiral phonons in MoSe2/WSe2 heterobilayers. 2D Mater. 2020, 7, 041002.

    Article  CAS  Google Scholar 

  116. Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Mooshammer, F.; Paradiso, N.; Strunk, C.; Huber, R.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Giant magnetic splitting inducing near-unity valley polarization in van der Waals heterostructures. Nat. Commun. 2017, 8, 1551.

    Article  PubMed  PubMed Central  Google Scholar 

  117. MacNeill, D.; Heikes, C.; Mak, K. F.; Anderson, Z.; Kormányos, A.; Zolyomi, V.; Park, J.; Ralph, D. C. Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett. 2015, 114, 037401.

    Article  CAS  PubMed  Google Scholar 

  118. Srivastava, A.; Sidler, M.; Allain, A. V.; Lembke, D. S.; Kis, A.; Imamoglu, A. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 2015, 11, 141–147.

    Article  CAS  Google Scholar 

  119. Aivazian, G.; Gong, Z. R.; Jones, A. M.; Chu, R. L.; Yan, J.; Mandrus, D. G.; Zhang, C. W.; Cobden, D.; Yao, W.; Xu, X. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 2015, 11, 148–152.

    Article  CAS  Google Scholar 

  120. Hsu, W. T.; Lu, L. S.; Wu, P. H.; Lee, M. H.; Chen, P. J.; Wu, P. Y.; Chou, Y. C.; Jeng, H. T.; Li, L. J.; Chu, M. W. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 2018, 9, 1356.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Liu, G. B.; Xiao, D.; Yao, Y. G.; Xu, X. D.; Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2643–2663.

    Article  CAS  PubMed  Google Scholar 

  122. Zhang, X. X.; You, Y. M.; Zhao, S. Y. F.; Heinz, T. F. Experimental evidence for dark excitons in monolayer WSe2. Phys. Rev. Lett. 2015, 115, 257403.

    Article  PubMed  Google Scholar 

  123. Park, K. D.; Jiang, T.; Clark, G.; Xu, X. D.; Raschke, M. B. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat. Nanotechnol. 2018, 13, 59–64.

    Article  CAS  PubMed  Google Scholar 

  124. Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.

    Article  CAS  Google Scholar 

  125. Du, L. J.; Hasan, T.; Castellanos-Gomez, A.; Liu, G. B.; Yao, Y. G.; Lau, C. N.; Sun, Z. P. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 2021, 3, 193–206.

    Article  CAS  Google Scholar 

  126. Xiao, D.; Chang, M. C.; Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 2010, 82, 1959–2007.

    Article  CAS  Google Scholar 

  127. Wu, S. F.; Ross, J. S.; Liu, G. B.; Aivazian, G.; Jones, A.; Fei, Z. Y.; Zhu, W. G.; Xiao, D.; Yao, W.; Cobden, D. et al. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2. Nat. Phys. 2013, 9, 149–153.

    Article  CAS  Google Scholar 

  128. Yamamoto, M.; Shimazaki, Y.; Borzenets, I. V.; Tarucha, S. Valley hall effect in two-dimensional hexagonal lattices. J. Phys. Soc. Jpn. 2015, 84, 121006.

    Article  Google Scholar 

  129. Cysne, T. P.; Costa, M.; Canonico, L. M.; Nardelli, M. B.; Muniz, R. B.; Rappoport, T. G. Disentangling orbital and valley hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett. 2021, 126, 056601.

    Article  CAS  PubMed  Google Scholar 

  130. Rycerz, A.; Tworzydlo, J.; Beenakker, C. W. J. Valley filter and valley valve in graphene. Nat. Phys. 2007, 3, 172–175.

    Article  CAS  Google Scholar 

  131. Xiao, D.; Yao, W.; Niu, Q. Valley-contrasting physics in graphene: Magnetic moment and topological transport. Phys. Rev. Lett. 2007, 99, 236809.

    Article  PubMed  Google Scholar 

  132. Yao, W.; Xiao, D.; Niu, Q. Valley-dependent optoelectronics from inversion symmetry breaking. Phys. Rev. B 2008, 77, 235406.

    Article  Google Scholar 

  133. Shimazaki, Y.; Yamamoto, M.; Borzenets, I. V.; Watanabe, K.; Taniguchi, T.; Tarucha, S. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nat. Phys. 2015, 11, 1032–1036.

    Article  CAS  Google Scholar 

  134. Gunlycke, D.; White, C. T. Graphene valley filter using a line defect. Phys. Rev. Lett. 2011, 106, 136806.

    Article  CAS  PubMed  Google Scholar 

  135. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 2014, 344, 1489–1492.

    Article  CAS  PubMed  Google Scholar 

  136. Lee, J.; Mak, K. F.; Shan, J. Electrical control of the valley Hall effect in bilayer MoS2 transistors. Nat. Nanotechnol. 2016, 11, 421–425.

    Article  CAS  PubMed  Google Scholar 

  137. Wu, Z. F.; Zhou, B. T.; Cai, X. B.; Cheung, P.; Liu, G. B.; Huang, M. Z.; Lin, J. X. Z.; Han, T. Y.; An, L. H.; Wang, Y. W. et al. Intrinsic valley Hall transport in atomically thin MoS2. Nat. Commun. 2019, 10, 611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, L. F.; Shao, L.; Liu, X. W.; Gao, A. Y.; Wang, H.; Zheng, B. J.; Hou, G. Z.; Shehzad, K.; Yu, L. W.; Miao, F. et al. Room-temperature valleytronic transistor. Nat. Nanotechnol. 2020, 15, 743–749.

    Article  CAS  PubMed  Google Scholar 

  139. Onga, M.; Zhang, Y. J.; Ideue, T.; Iwasa, Y. Exciton Hall effect in monolayer MoS2. Nat. Mater. 2017, 16, 1193–1197.

    Article  CAS  PubMed  Google Scholar 

  140. Ubrig, N.; Jo, S.; Philippi, M.; Costanzo, D.; Berger, H.; Kuzmenko, A. B.; Morpurgo, A. F. Microscopic origin of the valley hall effect in transition metal dichalcogenides revealed by wavelength-dependent mapping. Nano Lett. 2017, 17, 5719–5725.

    Article  CAS  PubMed  Google Scholar 

  141. Ahn, Y.; Dunning, J.; Park, J. Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 2005, 5, 1367–1370.

    Article  CAS  PubMed  Google Scholar 

  142. Guimarães, M. H. D.; Gao, H.; Han, Y. M.; Kang, K.; Xie, S. E.; Kim, C. J.; Muller, D. A.; Ralph, D. C.; Park, J. Atomically thin ohmic edge contacts between two-dimensional materials. ACS Nano 2016, 10, 6392–6399.

    Article  PubMed  Google Scholar 

  143. Yu, H. Y.; Liu, G. B.; Gong, P.; Xu, X. D.; Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 2014, 5, 3876.

    Article  CAS  PubMed  Google Scholar 

  144. Li, Y. M.; Li, J.; Shi, L. K.; Zhang, D.; Yang, W.; Chang, K. Light-induced exciton spin hall effect in van der Waals heterostructures. Phys. Rev. Lett. 2015, 115, 166804.

    Article  PubMed  Google Scholar 

  145. Lee, J.; Heo, W.; Cha, M.; Watanabe, K.; Taniguchi, T.; Kim, J.; Cha, S.; Kim, D.; Jo, M. H.; Choi, H. Ultrafast non-excitonic valley Hall effect in MoS2/WTe2 heterobilayers. Nat. Commun. 2021, 12, 1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Incorvia J. A.; Barré, E.; Kim, S. H.; McClellan, C.; Pop, E.; Wong, H. S. P.; Heinz, T. Near-room temperature electrical control of spin and valley Hall effect in monolayer WSe2 transistors for spintronic applications. In 2017 Fifth Berkeley Symposium on Energy Efficient Electronic Systems & Steep Transistors Workshop (E3S), Berkeley, USA, 2017, pp 1–2.

  147. Barré, E.; Incorvia, J. A. C.; Kim, S. H.; McClellan, C. J.; Pop, E.; Wong, H. S. P.; Heinz, T. F. Spatial separation of carrier spin by the valley Hall effect in monolayer WSe2 transistors. Nano Lett. 2019, 19, 770–774.

    Article  PubMed  Google Scholar 

  148. Unuchek, D.; Ciarrocchi, A.; Avsar, A.; Sun, Z.; Watanabe, K.; Taniguchi, T.; Kis, A. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 2019, 14, 1104–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kim, J.; Jin, C. H.; Chen, B.; Cai, H.; Zhao, T.; Lee, P.; Kahn, S.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures. Sci. Adv. 2017, 3, e1700518.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jin, C. H.; Kim, J.; Utama, M. I. B.; Regan, E. C.; Kleemann, H.; Cai, H.; Shen, Y. X.; Shinner, M. J.; Sengupta, A.; Watanabe, K. et al. Imaging of pure spin-valley diffusion current in WS2–WSe2 heterostructures. Science 2018, 360, 893–896.

    Article  CAS  PubMed  Google Scholar 

  151. Huang, Z. M.; Liu, Y. D.; Dini, K.; Tan, Q. H.; Liu, Z. J.; Fang, H. L.; Liu, J.; Liew, T.; Gao, W. B. Robust room temperature valley hall effect of interlayer excitons. Nano Lett. 2020, 20, 1345–1351.

    Article  CAS  PubMed  Google Scholar 

  152. Cava, R.; de Leon, N.; Xie, W. W. Introduction: Quantum materials. Chem. Rev. 2021, 121, 2777–2779.

    Article  CAS  PubMed  Google Scholar 

  153. Orenstein, J. Ultrafast spectroscopy of quantum materials. Phys. Today 2012, 65, 44–50.

    Article  CAS  Google Scholar 

  154. Kennes, D. M.; Claassen, M.; Xian, L. D.; Georges, A.; Millis, A. J.; Hone, J.; Dean, C. R.; Basov, D. N.; Pasupathy, A. N.; Rubio, A. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 2021, 17, 155–163.

    Article  CAS  Google Scholar 

  155. Devarakonda, A.; Inoue, H.; Fang, S.; Ozsoy-Keskinbora, C.; Suzuki, T.; Kriener, M.; Fu, L.; Kaxiras, E.; Bell, D. C.; Checkelsky, J. G. Clean 2D superconductivity in a bulk van der Waals superlattice. Science 2020, 370, 231–236.

    Article  CAS  PubMed  Google Scholar 

  156. Zeng, Y. H.; Xia, Z. C.; Kang, K. F.; Zhu, J. C.; Knüppel, P.; Vaswani, C.; Watanabe, K.; Taniguchi, T.; Mak, K. F.; Shan, J. Thermodynamic evidence of fractional Chern insulator in moire MoTe2. Nature 2023, 622, 69–73.

    Article  CAS  PubMed  Google Scholar 

  157. Mori, R.; Ciocys, S.; Takasan, K.; Ai, P.; Currier, K.; Morimoto, T.; Moore, J. E.; Lanzara, A. Spin-polarized spatially indirect excitons in a topological insulator. Nature 2023, 614, 249–255.

    Article  CAS  PubMed  Google Scholar 

  158. Li, J. I. A.; Taniguchi, T.; Watanabe, K.; Hone, J.; Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 2017, 13, 751–755.

    Article  CAS  Google Scholar 

  159. Tang, Y. H.; Su, K. X.; Li, L. Z.; Xu, Y.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.; Jian, C. M.; Xu, C. K. et al. Evidence of frustrated magnetic interactions in a Wigner-Mott insulator. Nat. Nanotechnol. 2023, 18, 233–237.

    Article  CAS  PubMed  Google Scholar 

  160. Cai, J. Q.; Anderson, E.; Wang, C.; Zhang, X. W.; Liu, X. Y.; Holtzmann, W.; Zhang, Y. N.; Fan, F. R.; Taniguchi, T.; Watanabe, K. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 2023, 622, 63–68.

    Article  CAS  PubMed  Google Scholar 

  161. Sharma, A.; Pu, S. Y.; Balram, A. C.; Jain, J. K. Facctional quantum Hall effect with unconventional pairing in monolayer graphene. Phys. Rev. Lett. 2023, 130, 126201.

    Article  CAS  PubMed  Google Scholar 

  162. Cao, Y.; Fatemi, V.; Demir, A.; Fang, S. A.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.

    Article  CAS  PubMed  Google Scholar 

  163. Cao, Y.; Fatemi, V.; Fang, S. A.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.

    Article  CAS  PubMed  Google Scholar 

  164. Hu, J. X.; Tan, J. Y.; Al Ezzi, M. M.; Chattopadhyay, U.; Gou, J.; Zheng, Y. T.; Wang, Z. H.; Chen, J. Y.; Thottathil, R.; Luo, J. B. et al. Controlled alignment of supermoiré lattice in double-aligned graphene heterostructures. Nat. Commun. 2023, 14, 4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Debnath, B.; Barlas, Y.; Wickramaratne, D.; Neupane, M. R.; Lake, R. K. Exciton condensate in bilayer transition metal dichalcogenides: Strong coupling regime. Phys. Rev. B 2017, 96, 174504.

    Article  Google Scholar 

  166. Fogler, M. M.; Butov, L. V.; Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 2014, 5, 4555.

    Article  CAS  PubMed  Google Scholar 

  167. Wu, F. C.; Lovorn, T.; Tutuc, E.; MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 2018, 121, 026402.

    Article  CAS  PubMed  Google Scholar 

  168. Wang, Z. F.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Evidence of high-temperature exciton condensation in two-dimensional atomic double layers. Nature 2019, 574, 76–80.

    Article  CAS  PubMed  Google Scholar 

  169. Combescot, M.; Combescot, R.; Dubin, F. Bose-Einstein condensation and indirect excitons: A review. Rep. Prog. Phys. 2017, 80, 066501.

    Article  PubMed  Google Scholar 

  170. Shi, Q. H.; Shih, E. M.; Rhodes, D.; Kim, B.; Barmak, K.; Watanabe, K.; Taniguchi, T.; Papic, Z.; Abanin, D. A.; Hone, J. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 2022, 17, 577–582.

    Article  CAS  PubMed  Google Scholar 

  171. Einstein, A. Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung. Sitz.ber. Preuss. Akad. Wiss. 1925, 1, 3–14

    Google Scholar 

  172. Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 1995, 269, 198–201.

    Article  CAS  PubMed  Google Scholar 

  173. Davis, K. B.; Mewes, M. O.; Andrews, M. R.; van Druten, N. J.; Durfee, D. S.; Kurn, D. M.; Ketterle, W. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 1995, 75, 3969–3973.

    Article  CAS  PubMed  Google Scholar 

  174. Deng, H.; Weihs, G.; Santori, C.; Bloch, J.; Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 2002, 298, 199–202.

    Article  CAS  PubMed  Google Scholar 

  175. Demokritov, S. O.; Demidov, V. E.; Dzyapko, O.; Melkov, G. A.; Serga, A. A.; Hillebrands, B.; Slavin, A. N. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 2006, 443, 430–433.

    Article  CAS  PubMed  Google Scholar 

  176. Klaers, J.; Schmitt, J.; Vewinger, F.; Weitz, M. Bose–Einstein condensation of photons in an optical microcavity. Nature 2010, 468, 545–548.

    Article  CAS  PubMed  Google Scholar 

  177. Snoke, D. Spontaneous bose coherence of excitons and polaritons. Science 2002, 298, 1368–1372.

    Article  CAS  PubMed  Google Scholar 

  178. Wu, F. C.; Xue, F.; MacDonald, A. H. Theory of two-dimensional spatially indirect equilibrium exciton condensates. Phys. Rev. B 2015, 92, 165121.

    Article  Google Scholar 

  179. Berman, O. L.; Kezerashvili, R. Y. High-temperature superfluidity of the two-component Bose gas in a transition metal dichalcogenide bilayer. Phys. Rev. B 2016, 93, 245410.

    Article  Google Scholar 

  180. Yoon, Y.; Zhang, Z. C.; Qi, R. S.; Joe, A. Y.; Sailus, R.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Wang, F. Charge transfer dynamics in MoSe2/hBN/WSe2 heterostructures. Nano Lett. 2022, 22, 10140–10146.

    Article  CAS  PubMed  Google Scholar 

  181. Xie, M.; MacDonald, A. H. Electrical reservoirs for bilayer excitons. Phys. Rev. Lett. 2018, 121, 067702.

    Article  CAS  PubMed  Google Scholar 

  182. Sigl, L.; Sigger, F.; Kronowetter, F.; Kiemle, J.; Klein, J.; Watanabe, K.; Taniguchi, T.; Finley, J. J.; Wurstbauer, U.; Holleitner, A. W. Signatures of a degenerate many-body state of interlayer excitons in a van der Waals heterostack. Phys. Rev. Res. 2020, 2, 042044.

    Article  CAS  Google Scholar 

  183. Mott, N. F. The transition to the metallic state. Philos. Mag. 1961, 6, 287–309.

    Article  CAS  Google Scholar 

  184. Ma, L. G.; Nguyen, P. X.; Wang, Z. F.; Zeng, Y. X.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Mak, K. F.; Shan, J. Strongly correlated excitonic insulator in atomic double layers. Nature 2021, 598, 585–589.

    Article  CAS  PubMed  Google Scholar 

  185. Chen, D. X.; Lian, Z.; Huang, X.; Su, Y.; Rashetnia, M.; Ma, L.; Yan, L.; Blei, M.; Xiang, L.; Taniguchi, T. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 2022, 18, 1171–1176.

    Article  CAS  Google Scholar 

  186. Gu, J.; Ma, L. G.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Shan, J.; Mak, K. F. Dipolar excitonic insulator in a moiré lattice. Nat. Phys. 2022, 18, 395–400.

    Article  CAS  Google Scholar 

  187. Zhang, Z. C.; Regan, E. C.; Wang, D. Q.; Zhao, W. Y.; Wang, S. X.; Sayyad, M.; Yumigeta, K.; Watanabe, K.; Taniguchi, T.; Tongay, S. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 2022, 18, 1214–1220.

    Article  CAS  Google Scholar 

  188. Xiong, R. C.; Nie, J. H.; Brantly, S. L.; Hays, P.; Sailus, R.; Watanabe, K.; Taniguchi, T.; Tongay, S.; Jin, C. H. Correlated insulator of excitons in WSe2/WS2 moire superlattices. Science 2023, 380, 860–864.

    Article  CAS  PubMed  Google Scholar 

  189. Wang, T. M.; Li, Z. P.; Lu, Z. G.; Li, Y. M.; Miao, S. N.; Lian, Z.; Meng, Y. Z.; Blei, M.; Taniguchi, T.; Watanabe, K. et al. Observation of quantized exciton energies in monolayer WSe2 under a strong magnetic field. Phys. Rev. X 2020, 10, 021024.

    CAS  Google Scholar 

  190. Efimkin, D. K.; MacDonald, A. H. Exciton-polarons in doped semiconductors in a strong magnetic field. Phys. Rev. B 2018, 97, 235432.

    Article  CAS  Google Scholar 

  191. Tang, Y. H.; Gu, J.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J. C.; Mak, K. F.; Shan, J. Dielectric catastrophe at the Wigner–Mott transition in a moiré superlattice. Nat. Commun. 2022, 13, 4271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Xu, Y.; Liu, S.; Rhodes, D. A.; Watanabe, K.; Taniguchi, T.; Hone, J.; Elser, V.; Mak, K. F.; Shan, J. Correlated insulating states at fractional fillings of moiré superlattices. Nature 2020, 587, 214–218.

    Article  CAS  PubMed  Google Scholar 

  193. Huang, X.; Wang, T. M.; Miao, S. N.; Wang, C.; Li, Z. P.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Okamoto, S.; Xiao, D. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 2021, 17, 715–719.

    Article  CAS  Google Scholar 

  194. Li, H. Y.; Li, S. W.; Regan, E. C.; Wang, D. Q.; Zhao, W. Y.; Kahn, S.; Yumigeta, K.; Blei, M.; Taniguchi, T.; Watanabe, K. et al. Imaging two-dimensional generalized Wigner crystals. Nature 2021, 597, 650–654.

    Article  CAS  PubMed  Google Scholar 

  195. Pan, H. N.; Wu, F. C.; Das Sarma, S. Quantum phase diagram of a Moiré-Hubbard model. Phys. Rev. B 2020, 102, 201104.

    Article  CAS  Google Scholar 

  196. Park, H.; Zhu, J. Y.; Wang, X.; Wang, Y. Q.; Holtzmann, W.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Fu, L.; Cao, T. et al. Dipole ladders with large Hubbard interaction in a moiré exciton lattice. Nat. Phys. 2023, 19, 1286–1292.

    Article  CAS  Google Scholar 

  197. Wang, X.; Zhang, X. W.; Zhu, J. Y.; Park, H.; Wang, Y. Q.; Wang, C.; Holtzmann, W. G.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Intercell moiré exciton complexes in electron lattices. Nat. Mater. 2023, 22, 599–604.

    Article  CAS  PubMed  Google Scholar 

  198. Lian, Z.; Chen, D. X.; Ma, L.; Meng, Y. Z.; Su, Y.; Yan, L.; Huang, X.; Wu, Q. R.; Chen, X. Y.; Blei, M. et al. Quadrupolar excitons and hybridized interlayer Mott insulator in a trilayer moiré superlattice. Nat. Commun. 2023, 14, 4604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Wang, X.; Xiao, C. X.; Park, H.; Zhu, J. Y.; Wang, C.; Taniguchi, T.; Watanabe, K.; Yan, J. Q.; Xiao, D.; Gamelin, D. R. et al. Light-induced ferromagnetism in moiré superlattices. Nature 2022, 604, 468–473.

    Article  CAS  PubMed  Google Scholar 

  200. Zeng, Y. H.; Xia, Z. C.; Dery, R.; Watanabe, K.; Taniguchi, T.; Shan, J.; Mak, K. F. Exciton density waves in Coulomb-coupled dual moiré lattices. Nat. Mater. 2023, 22, 175–179.

    Article  CAS  PubMed  Google Scholar 

  201. Kim, Y.; Kim, J. Near-field optical imaging and spectroscopy of 2D-TMDs. Nanophotonics 2021, 10, 3397–3415.

    Article  CAS  Google Scholar 

  202. Hwangbo, S.; Hu, L.; Hoang, A. T.; Choi, J. Y.; Ahn, J. H. Wafer-scale monolithic integration of full-colour micro-LED display using MoS2 transistor. Nat. Nanotechnol. 2022, 17, 500–506.

    Article  CAS  PubMed  Google Scholar 

  203. Wang, Y.; Kim, J. C.; Li, Y.; Ma, K. Y.; Hong, S.; Kim, M.; Shin, H. S.; Jeong, H. Y.; Chhowalla, M. P-type electrical contacts for 2D transition-metal dichalcogenides. Nature 2022, 610, 61–66.

    Article  PubMed  Google Scholar 

  204. Brotons-Gisbert, M.; Baek, H.; Molina-Sánchez, A.; Campbell, A.; Scerri, E.; White, D.; Watanabe, K.; Taniguchi, T.; Bonato, C.; Gerardot, B. D. Spin-layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 2020, 19, 630–636.

    Article  CAS  PubMed  Google Scholar 

  205. Vitale, S. A.; Nezich, D.; Varghese, J. O.; Kim, P.; Gedik, N.; Jarillo-Herrero, P.; Xiao, D.; Rothschild, M. Valleytronics: Opportunities, challenges, and paths forward. Small 2018, 14, 1801483.

    Article  Google Scholar 

  206. Zhang, Y.; Yuan, N. F. Q.; Fu, L. Moiré quantum chemistry: Charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 2020, 102, 201115.

    Article  CAS  Google Scholar 

  207. Pan, H. N.; Das Sarma, S. Interaction-driven filling-induced metal-insulator transitions in 2D moiré lattices. Phys. Rev. Lett. 2021, 127, 096802.

    Article  CAS  PubMed  Google Scholar 

  208. Morales-Durán, N.; MacDonald, A. H.; Potasz, P. Metal-insulator transition in transition metal dichalcogenide heterobilayer moiré superlattices. Phys. Rev. B 2021, 103, L241110.

    Article  Google Scholar 

  209. Nilsson, F.; Kuisma, M.; Pakdel, S.; Thygesen, K. S. Excitonic insulators and superfluidity in two-dimensional bilayers without external fields. J. Phys. Chem. Lett. 2023, 14, 2277–2283.

    Article  CAS  PubMed  Google Scholar 

  210. Liu, X. M.; Li, J. I. A.; Watanabe, K.; Taniguchi, T.; Hone, J.; Halperin, B. I.; Kim, P.; Dean, C. R. Crossover between strongly coupled and weakly coupled exciton superfluids. Science 2022, 375, 205–209.

    Article  CAS  PubMed  Google Scholar 

  211. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. M. S., C. H., and X. X. Z. acknowledge the support from the National Natural Science Foundation of China (Nos. 61874074, 62004128, and 11974088) and Science and Technology Project of Shenzhen (No. JCYJ20220531100815034). J. T. acknowledges the support from China Postdoctoral Science Foundation (No. 2020M682847). H. N. L. acknowledges Guangdong Basic and Applied Basic Research Foundation (General Program, No. 2022A1515012055).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Han, Xiaoxian Zhang or Yumeng Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zheng, Y., Jiang, K. et al. Interlayer exciton dynamics of transition metal dichalcogenide heterostructures under electric fields. Nano Res. 17, 4555–4572 (2024). https://doi.org/10.1007/s12274-023-6325-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6325-3

Keywords

Navigation