Skip to main content
Log in

Highly active and durable core–shell electrocatalysts for proton exchange membrane fuel cells

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

This work presents simple post-treatment methods to selectively and partially remove the Pd core of Pd–Pt core–shell (Pt@Pd/C) catalysts. The proton exchange membrane fuel cell with the post-treated Pt@Pd/C cathode (Pt loading: 0.10 mg·cm−2) delivers an impressive peak power density of 1.2 W·cm−2. The partial removal of Pd core endows an ultrahigh oxygen reduction reaction (ORR) mass activity of 0.32 A·mgPGM−1 when normalized to the platinum group metal (PGM) mass, or equivalently 0.55 A·mgPt−1 at 0.9 V measured in a fuel cell. The post-treatment thickens the Pt shells and mitigates the Pd dissolution during potential cycling. As a result, the post-treated core–shell catalyst demonstrates superior durability in ORR mass activity and polarization power density retention than untreated core–shell catalyst and benchmark Pt/C. In-situ inductively coupled plasma-mass spectrometry (ICP-MS) results highlight that the amount of dissolved Pd in post-treated core–shell catalyst is 17-times lower than that of the untreated one. Our findings highlight the importance of structural tuning of catalysts in enhancing their mass activity and durability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagner, F. T.; Lakshmanan, B.; Mathias, M. F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 2010, 1, 2204–2219.

    Article  CAS  Google Scholar 

  2. Debe, M. K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51.

    Article  CAS  Google Scholar 

  3. Kongkanand, A.; Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137.

    Article  CAS  Google Scholar 

  4. Li, Y.; Chen, M. Y.; Lu, B. A.; Zhang, J. N. Recent advances in exploring highly active & durable PGM-free oxygen reduction catalysts. J. Electrochem. 2023, 29, 2215002.

    Google Scholar 

  5. Singh, K.; Tetteh, E. B.; Lee, H. Y.; Kang, T. H.; Yu, J. S. Tailor-made Pt catalysts with improved oxygen reduction reaction stability/durability. ACS Catal. 2019, 9, 8622–8645.

    Article  CAS  Google Scholar 

  6. Papadias, D. D.; Ahluwalia, R. K.; Kariuki, N.; Myers, D.; More, K. L.; Cullen, D. A.; Sneed, B. T.; Neyerlin, K. C.; Mukundan, R.; Borup, R. L. Durability of Pt-Co alloy polymer electrolyte fuel cell cathode catalysts under accelerated stress tests. J. Electrochem. Soc. 2018, 165, F3166–F3177.

    Article  CAS  Google Scholar 

  7. Lohse-Busch, H.; Stutenberg, K.; Duoba, M.; Iliev, S. Technology assessment of a fuel cell vehicle: 2017 Toyota Mirai. Argonne National Laboratory: Argonne, 2018.

    Book  Google Scholar 

  8. Borup, R. L.; Kusoglu, A.; Neyerlin, K. C.; Mukundan, R.; Ahluwalia, R. K.; Cullen, D. A.; More, K. L.; Weber, A. Z.; Myers, D. J. Recent developments in catalyst-related PEM fuel cell durability. Curr. Opin. Electrochem. 2020, 21, 192–200.

    Article  CAS  Google Scholar 

  9. Shin, J.; Choi, J. H.; Cha, P. R.; Kim, S. K.; Kim, I.; Lee, S. C.; Jeong, D. S. Catalytic activity for oxygen reduction reaction on platinum-based core–shell nanoparticles: All-electron density functional theory. Nanoscale 2015, 7, 15830–15839.

    Article  CAS  Google Scholar 

  10. Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 1998, 81, 2819–2822.

    Article  Google Scholar 

  11. Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. 2005, 117, 2170–2173.

    Article  Google Scholar 

  12. Sasaki, K.; Naohara, H.; Cai, Y.; Choi, Y. M.; Liu, P.; Vukmirovic, M. B.; Wang, J. X.; Adzic, R. R. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew. Chem. 2010, 122, 8784–8789.

    Article  Google Scholar 

  13. Sasaki, K.; Wang, J. X.; Naohara, H.; Marinkovic, N.; More, K.; Inada, H.; Adzic, R. R. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure, and activity of Pt shells on Pd cores. Electrochim. Acta 2010, 55, 2645–2652.

    Article  CAS  Google Scholar 

  14. Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.

    Article  CAS  Google Scholar 

  15. Branković, S. R.; Wang, J. X.; Adžić, R. R. New methods of controlled monolayer-to-multilayer deposition of Pt for designing electrocatalysts at an atomic level. J. Serb. Chem. Soc. 2001, 66, 887–898.

    Article  Google Scholar 

  16. Zhou, W. P.; Sasaki, K.; Su, D.; Zhu, Y. M.; Wang, J. X.; Adzic, R. R. Gram-scale- synthesized Pd2Co-supported Pt monolayer electrocatalysts for oxygen reduction reaction. J. Phys. Chem. C 2010, 114, 8950–8957.

    Article  CAS  Google Scholar 

  17. Shao, M. H.; Protsailo, L. V. Platinum monolayer on hollow, porous nanoparticles with high surface areas and method of making. U.S. Patent 8,921.260 B2, December 30, 2014.

  18. Shao, M. H.; Weidner, J. W.; Odell, J. H. Method and system for core–shell catalyst processing. U.S. Patent 10,541,425 B2, January 21, 2020.

  19. Kongkanand, A.; Subramanian, N. P.; Yu, Y. C.; Liu, Z. Y.; Igarashi, H.; Muller, D. A. Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core–shell catalyst. ACS Catal. 2016, 6, 1578–1583.

    Article  CAS  Google Scholar 

  20. Zhang, J.; Lima, F. H. B.; Shao, M. H.; Sasaki, K.; Wang, J. X.; Hanson, J.; Adzic, R. R. Platinum monolayer on nonnoble metal-noble metal core–shell nanoparticle electrocatalysts for O2 reduction. J. Phys. Chem. B 2005, 709, 22701–22704.

    Article  Google Scholar 

  21. Zhou, W. P.; Yang, X. F.; Vukmirovic, M. B.; Koel, B. E.; Jiao, J.; Peng, G. W.; Mavrikakis, M.; Adzic, R. R. Imoroning electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe (111) single-crystal alloy. J. Am. Chem. Soc. 2009, 131, 12755–12762.

    Article  CAS  Google Scholar 

  22. Knupp, S. L.; Vukmirovic, M. B.; Haldar, P.; Herron, J. A.; Mavrikakis, M.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on carbon-supported PdIr nanoparticles. Electrocatalysis 2010, 1, 213–223.

    Article  CAS  Google Scholar 

  23. Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Vukmirovic, M. B.; Marinkovic, N. S.; Adzic, R. R. Pt monolayer on Au-stabilized PdNi core–shell nanoparticles for oxygen reduction reaction. Electrochim. Acta 2013, 110, 267–272.

    Article  CAS  Google Scholar 

  24. Kuttiyiel, K. A.; Choi, Y.; Hwang, S. M.; Park, G. G.; Yang, T. H.; Su, D.; Sasaki, K.; Liu, P.; Adzic, R. R. Enhancement of the oxygen reduction on nitride stabilized pt–M (M = Fe, Co, and Ni) core–shell nanoparticle electrocatalysts. Nano Energy 2015, 13, 442–449.

    Article  CAS  Google Scholar 

  25. Hu, J.; Kuttiyiel, K. A.; Sasaki, K.; Su, D.; Yang, T. H.; Park, G. G.; Zhang, C. X.; Chen, G. Y.; Adzic, R. R. Pt monolayer shell on nitrided alloy core—A path to highly stable oxygen reduction catalyst. Catalysts 2015, 5, 1321–1332.

    Article  CAS  Google Scholar 

  26. Zhang, Y.; Ma, C.; Zhu, Y. M.; Si, R.; Cai, Y.; Wang, J. X.; Adzic, R. R. Hollow core supported Pt monolayer catalysts for oxygen reduction. Catal. Today 2013, 202, 50–54.

    Article  CAS  Google Scholar 

  27. Bliznakov, S.; Vukmirovic, M.; Yang, L. J.; Sutter, E.; Adzic, R. R. Pt monolayer on electrodeposited Pd nanostructures-advanced cathode catalysts for PEM fuel cells. ECS Trans. 2016, 41, 1055–1066.

    Article  Google Scholar 

  28. Park, J.; Zhang, L.; Choi, S. I.; Roling, L. T.; Lu, N.; Herron, J. A.; Xie, S. F.; Wang, J. G.; Kim, M. J.; Mavrikakis, M. et al. Atomic layer-by-layer deposition of platinum on palladium octahedra for enhanced catalysts toward the oxygen reduction reaction. ACS Nano 2015, 9, 2635–2647.

    Article  CAS  Google Scholar 

  29. Park, J.; Vara, M.; Xia, Y. N. A systematic study of the catalytic durability of Pd@Pt2-3L nano-sized octahedra toward oxygen reduction. Catal. Today 2017, 280, 266–273.

    Article  CAS  Google Scholar 

  30. Zhang, J. L.; Vukmirovic, M. B.; Sasaki, K.; Nilekar, A. U.; Mavrikakis, M.; Adzic, R. R. Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J. Am. Chem. Soc. 2005, 127, 12480–12481.

    Article  CAS  Google Scholar 

  31. Choi, S. I.; Shao, M. H.; Lu, N.; Ruditskiy, A.; Peng, H. C.; Park, J.; Guerrero, S.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and characterization of Pd@Pt-Ni core–shell octahedra with high activity toward oxygen reduction. ACS Nano 2014, 8, 10363–10371.

    Article  CAS  Google Scholar 

  32. Zhao, X.; Chen, S.; Fang, Z. C.; Ding, J.; Sang, W.; Wang, Y. C.; Zhao, J.; Peng, Z. M.; Zeng, J. Octahedral Pd@Pt18Ni core–shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 2804–2807.

    Article  CAS  Google Scholar 

  33. Xie, S. F.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J. G.; Kim, M. J.; Xie, Z. X. et al. Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett. 2014, 14, 3570–3576.

    Article  CAS  Google Scholar 

  34. Wang, J. X.; Inada, H.; Wu, L. J.; Zhu, Y. M.; Choi, Y.; Liu, P.; Zhou, W. P.; Adzic, R. R. Oxygen reduction on well-defined core–shell nanocatalysts: Particle size, facet, and Pt shell thickness effects. J. Am. Chem. Soc. 2009, 131, 17298–17302.

    Article  CAS  Google Scholar 

  35. Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M. F.; Liu, J. Y.; Xie, Z. X.; Herron, J. A. et al. Palladium-platinum core–shell icosahedra with substantially enhanced activity and durability towards oxygen reduction. Nat. Commun. 2015, 6, 7594.

    Article  Google Scholar 

  36. Zhang, L. L.; Zhu, S. Q.; Chang, Q. W.; Su, D.; Yue, J.; Du, Z.; Shao, M. H. Palladium–platinum core–shell electrocatalysts for oxygen reduction reaction prepared with the assistance of citric acid. ACS Catal. 2016, 6, 3428–3432.

    Article  CAS  Google Scholar 

  37. Zhu, S. Q.; Yue, J.; Qin, X. P.; Shao, M. H. Synthesis and evaluation of core–shell electrocatalysts for oxygen reduction reaction. ECS Trans. 2016, 75, 731–740.

    Article  CAS  Google Scholar 

  38. Khateeb, S.; Guerreo, S.; Su, D.; Darling, R. M.; Protsailo, L. V.; Shao, M. H. Fuel cell performance of palladium-platinum core–shell electrocatalysts synthesized in gram-scale batches. J. Electrochem. Soc. 2016, 163, F708–F713.

    Article  CAS  Google Scholar 

  39. Cochell, T.; Manthiram, A. Pt@PdxCuy/C core–shell electrocatalysts for oxygen reduction reaction in fuel cells. Langmuir 2012, 28, 1579–1587.

    Article  CAS  Google Scholar 

  40. Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat. Commun. 2012, 3, 1115.

    Article  Google Scholar 

  41. Shao, M. H.; Smith, B. H.; Guerrero, S.; Protsailo, L.; Su, D.; Kaneko, K.; Odell, J. H.; Humbert, M. P.; Sasaki, K.; Marzullo, J. et al. Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 15078–15090.

    Article  CAS  Google Scholar 

  42. Adzic, R. R. Platinum monolayer electrocatalysts: Tunable activity, stability, and self-healing properties. Electrocatalysis 2012, 3, 163–169.

    Article  CAS  Google Scholar 

  43. Pan, L. J.; Ott, S.; Dionigi, F.; Strasser, P. Current challenges related to the deployment of shape-controlled Pt alloy oxygen reduction reaction nanocatalysts into low Pt-loaded cathode layers of proton exchange membrane fuel cells. Curr. Opin. Electrochem. 2019, 18, 61–71.

    Article  CAS  Google Scholar 

  44. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    Article  CAS  Google Scholar 

  45. Ball, S. Core-shell catalysts in PEMFC cathode environments. In Electrocatalysis in Fuel Cells: A Non- and Low-Platinum Approach. Shao, M. H., Ed.; Springer: London, 2013; pp 561–587.

    Chapter  Google Scholar 

  46. Shao, M. H. Method to prepare full monolayer of platinum on palladium based core nanoparticles. U.S. Patent 9.246,176 B2, January 26, 2016.

  47. Kaneko, K.; Kimura, H.; Adachi, M. Method for producing core–shell catalyst particles. U.S. Patent 10,263,259 B2, April 16, 2019.

  48. Thambidurai, C.; Gebregziabiher, D. K.; Liang, X. H.; Zhang, Q.; H. Ivanova, V.; Haumesser, P. H.; Stickney, J. L. E-ALD of Cu nanofilms on Ru/Ta wafers using surface limited redox replacement. J. Electrochem. Soc. 2010, 157, D466–D471.

    Article  CAS  Google Scholar 

  49. Zhu, S. Q.; Yue, J.; Qin, X. P.; Wei, Z. D.; Liang, Z. X.; Adzic, R. R.; Brankovic, S. R.; Du, Z.; Shao, M. H. The role of citric acid in perfecting platinum monolayer on palladium nanoparticles during the surface limited redox replacement reaction. J. Electrochem. Soc. 2016, 163, D3040–D3046.

    Article  CAS  Google Scholar 

  50. Shao, M. H.; Odell, J. H.; Choi, S. I.; Xia, Y. N. Electrochemical surface area measurements of platinum- and palladium-based nanoparticles. Electrochem. Commun. 2013, 31, 46–48.

    Article  CAS  Google Scholar 

  51. Sassin, M. B.; Garsany, Y.; Gould, B. D.; Swider-Lyons, K. E. Fabrication method for laboratory-scale high-performance membrane electrode assemblies for fuel cells. Anal. Chem. 2017, 89, 511–518.

    Article  CAS  Google Scholar 

  52. Kabir, S.; Myers, D. J.; Kariuki, N.; Park, J.; Wang, G. X.; Baker, A.; Macauley, N.; Mukundan, R.; More, K. L.; Neyerlin, K. C. Elucidating the dynamic nature of fuel cell electrodes as a function of conditioning: An ex situ material characterization and in situ electrochemical diagnostic study. ACS Appl. Mater. Interfaces 2019, 11, 45016–45030.

    Article  CAS  Google Scholar 

  53. Neyerlin, K. C.; Gu, W. B.; Jorne, J.; Gasteiger, H. A. Determination of catalyst unique parameters for the oxygen reduction reaction in a PEMFC. J. Electrochem. Soc. 2006, 153, A1955–A1963.

    Article  CAS  Google Scholar 

  54. Ott, S.; Orfanidi, A.; Schmies, H.; Anke, B.; Nong, H. N.; Hübner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 2020, 19, 77–85.

    Article  CAS  Google Scholar 

  55. Xiao, F.; Wang, Y. A.; Xu, G. L.; Yang, F.; Zhu, S. Q.; Sun, C. J.; Cui, Y. D.; Xu, Z. W.; Zhao, Q. L.; Jang, J. et al. Fe-N-C boosts the stability of supported platinum nanoparticles for fuel cells. J. Am. Chem. Soc. 2022, 144, 20372–20384.

    Article  CAS  Google Scholar 

  56. Topalov, A. A.; Cherevko, S.; Zeradjanin, A. R.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J. J. Towards a comprehensive understanding of platinum dissolution in acidic media. Chem. Sci. 2014, 5, 631–638.

    Article  CAS  Google Scholar 

  57. Meier, J. C.; Galeano, C.; Katsounaros, I.; Topalov, A. A.; Kostka, A.; Schüth, F.; Mayrhofer, K. J. J. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions. ACS Catal. 2012, 2, 832–843.

    Article  CAS  Google Scholar 

  58. Lopes, P. P.; Strmcnik, D.; Tripkovic, D.; Connell, J. G.; Stamenkovic, V.; Markovic, N. M. Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments. ACS Catal. 2016, 6, 2536–2544.

    Article  CAS  Google Scholar 

  59. Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; 2nd ed. John Wiley: New York, 2001; pp 580–632.

    Google Scholar 

  60. Xie, S. F.; Lu, N.; Xie, Z. X.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis of Pd–Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem. 2012, 124, 10412–10416.

    Article  Google Scholar 

  61. Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. 25th anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333

    Article  CAS  Google Scholar 

  62. Zheng, Y. Q.; Zeng, J.; Ruditskiy, A.; Liu, M. C.; Xia, Y. N. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 2014, 26, 22–33.

    Article  CAS  Google Scholar 

  63. Dursun, A.; Pugh, D. V.; Corcoran, S. G. Dealloying of Ag-Au alloys in halide-containing electrolytes: Affect on critical potential and pore size. J. Electrochem. Soc. 2003, 150, B355–B360.

    Article  CAS  Google Scholar 

  64. Xia, Y. N.; Kim, E.; Whitesides, G. M. Microcontact printing of alkanethiols on silver and its application in microfabrication. J. Electrochem. Soc. 1996, 143, 1070–1079.

    Article  CAS  Google Scholar 

  65. Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Aloni, S.; Yin, Y. D. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am. Chem. Soc. 2005, 127, 7332–7333.

    Article  CAS  Google Scholar 

  66. Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Yin, Y. D.; Li, Z. Y. Size-dependence of surface plasmon resonance and oxidation for Pd nanocubes synthesized via a seed etching process. Nano Lett. 2005, 5, 1237–1242.

    Article  CAS  Google Scholar 

  67. Cheng, H.; Gui, R. J.; Yu, H.; Wang, C.; Liu, S.; Liu, H. F.; Zhou, T. P.; Zhang, N.; Zheng, X. S.; Chu, W. S. et al. Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction. Proc. Natl. Acad. Sci. USA 2021, 118, e2104026118.

    Article  CAS  Google Scholar 

  68. Guan, J. Y.; Yang, S. X.; Liu, T. T.; Yu, Y. H.; Niu, J.; Zhang, Z. P.; Wang, F. Intermetallic FePt@PtBi core–shell nanoparticles for oxygen reduction electrocatalysis. Angew. Chem. 2021, 133, 22070–22075.

    Article  Google Scholar 

  69. Liang, J. S.; Zhao, Z. L.; Li, N.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Lu, G.; Wang, D. L.; Hwang, B. J. et al. Biaxial strains mediated oxygen reduction electrocatalysis on fenton reaction resistant L10-PtZn fuel cell cathode. Adv. Energy Mater. 2020, 10, 2000179.

    Article  CAS  Google Scholar 

  70. Yarlagadda, V.; Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Koestner, R.; Gu, W. B.; Thompson, L.; Kongkanand, A. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 2018, 3, 618–621.

    Article  CAS  Google Scholar 

  71. Padgett, E.; Yarlagadda, V.; Holtz, M. E.; Ko, M.; Levin, B. D. A.; Kukreja, R. S.; Ziegelbauer, J. M.; Andrews, R. N.; Ilavsky, J.; Kongkanand, A. et al. Mitigation of PEM fuel cell catalyst degradation with porous carbon supports. J. Electrochem. Soc. 2019, 166, F198–F207.

    Article  CAS  Google Scholar 

  72. Yang, C. L.; Wang, L. N.; Yin, P.; Liu, J. Y.; Chen, M. X.; Yan, Q. Q.; Wang, Z. S.; Xu, S. L.; Chu, S. Q.; Cui, C. H. et al. Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells. Science 2021, 374, 459–464.

    Article  CAS  Google Scholar 

  73. Han, B. H.; Carlton, C. E.; Kongkanand, A.; Kukreja, R. S.; Theobald, B. R.; Gan, L.; O’Malley, R.; Strasser, P.; Wagner, F. T.; Shao-Horn, Y. Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells. Energy Environ. Sci. 2015, 8, 258–266.

    Article  CAS  Google Scholar 

  74. Wang, R. Q.; Sui, S. Structure analysis of PEMFC cathode catalyst layer. J. Electrochem. 2021, 27, 595–604.

    CAS  Google Scholar 

  75. U.S. Department of Energy The fuel cell technologies office multi-year research, development, and demonstration plan. U.S. Department of Energy, 2016.

  76. Liang, J. S.; Li, N.; Zhao, Z. L.; Ma, L.; Wang, X. M.; Li, S. Z.; Liu, X.; Wang, T. Y.; Du, Y. P.; Lu, G. et al. Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angew. Chem., Int. Ed. 2019, 58, 15471–15477.

    Article  CAS  Google Scholar 

  77. Zhao, X. R.; Xi, C.; Zhang, R.; Song, L.; Wang, C. Y.; Spendelow, J. S.; Frenkel, A. I.; Yang, J.; Xin, H. L.; Sasaki, K. High-performance nitrogen-doped intermetallic PtNi catalyst for the oxygen reduction reaction. ACS Catal. 2020, 10, 10637–10645.

    Article  CAS  Google Scholar 

  78. Cai, X.; Lin, R.; Liu, X.; Zhao, Y. C. Effect of heat treatment on the surface structure of Pd@Pt-Ni core–shell catalysts for the oxygen reduction reaction. J. Alloys Compd. 2021, 884, 161059.

    Article  CAS  Google Scholar 

  79. Kang, Y. Q.; Wang, J. Q.; Wei, Y. P.; Wu, Y. L.; Xia, D. S.; Gan, L. Engineering nanoporous and solid core–shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Res. 2022, 15, 6148–6155.

    Article  CAS  Google Scholar 

  80. Li, J. R.; Xi, Z.; Pan, Y. T.; Spendelow, J. S.; Duchesne, P. N.; Su, D.; Li, Q.; Yu, C.; Yin, Z. Y.; Shen, B. et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells. J. Am. Chem. Soc. 2018, 140, 2926–2932.

    Article  CAS  Google Scholar 

  81. Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

    Article  CAS  Google Scholar 

  82. Dionigi, F.; Weber, C. C.; Primbs, M.; Gocyla, M.; Bonastre, A. M.; Spöri, C.; Schmies, H.; Hornberger, E.; Kühl, S.; Drnec, J. et al. Controlling near-surface Ni composition in octahedral PtNi(Mo) nanoparticles by Mo doping for a highly active oxygen reduction reaction catalyst. Nano Lett. 2019, 19, 6876–6885.

    Article  CAS  Google Scholar 

  83. Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; Xi, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

    Article  CAS  Google Scholar 

  84. Gasteiger, H. A.; Panels, J. E.; Yan, S. G. Dependence of PEM fuel cell performance on catalyst loading. J. Power Sources 2004, 127, 162–171.

    Article  CAS  Google Scholar 

  85. Kaiser, J.; Simonov, P. A.; Zaikovskii, V. I.; Hartnig, C.; Jörissen, L.; Savinova, E. R. Influence of carbon support on the performance of platinum based oxygen reduction catalysts in a polymer electrolyte fuel cell. J. Appl. Electrochem. 2007, 37, 1429–1437.

    Article  CAS  Google Scholar 

  86. Wells, P. P.; Crabb, E. M.; King, C. R.; Wiltshire, R.; Billsborrow, B.; Thompsett, D.; Russell, A. E. Preparation, structure, and stability of Pt and Pd monolayer modified Pd and Pt electrocatalysts. Phys. Chem. Chem. Phys. 2009, 11, 5773–5781.

    Article  CAS  Google Scholar 

  87. Shao, M. H. Palladium-based electrocatalysts for oxygen reduction reaction. In Electrocatalysis in Fuel Cells: A Non- and Low-Platinum Approach. Shao, M. H., Ed.; Springer: London, 2013; pp 513–531.

    Chapter  Google Scholar 

  88. Zhang, A. J.; Birss, V. I.; Vanýsek, P. Impedance characterization of thin electrochemically formed palladium oxide films. J. Electroanal. Chem. 1994, 378, 63–75.

    Article  Google Scholar 

  89. Butler, J. A. V.; Drever, G. The mechanism of electrolytic processes. Part I. The anodic oxidation of some metals of the platinum group. Trans. Faraday Soc. 1936, 32, 427–435.

    Article  CAS  Google Scholar 

  90. Shao, M. H.; Yu, T.; Odell, J. H.; Jin, M. S.; Xia, Y. N. Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem. Commun. 2011, 47, 6566–6568.

    Article  CAS  Google Scholar 

  91. Chausse, V.; Regull, P.; Victori, L. Formation of a higher palladium oxide in the oxygen evolution potential range. J. Electroanal. Chem. Interfacial Electrochem. 1987, 238, 115–128.

    Article  CAS  Google Scholar 

  92. Zhang, A. J.; Gaur, M.; Birss, V. I. Growth of thin, hydrous oxide films at Pd electrodes. J. Electroanal. Chem. 1995, 389, 149–159.

    Article  Google Scholar 

  93. Dall’Antonia, L. H.; Tremiliosi-Filho, G.; Jerkiewicz, G. Influence of temperature on the growth of surface oxides on palladium electrodes. J. Electroanal. Chem. 2001, 502, 72–81.

    Article  Google Scholar 

  94. Grdeń, M.; Łukaszewski, M.; Jerkiewicz, G.; Czerwiński, A. Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution, and ionic adsorption. Electrochim. Acta 2008, 53, 7583–7598.

    Article  Google Scholar 

  95. Birss, V. I.; Chan, M.; Phan, T.; Vanýsek, P.; Zhang, A. An electrochemical study of the composition of thin, compact Pd oxide films. J. Chem. Soc. Faraday Trans. 1996, 92, 4041–4047.

    Article  CAS  Google Scholar 

  96. Grdeń, M.; Piaścik, A.; Koczorowski, Z.; Czerwiński, A. Hydrogen electrosorption in Pd-Pt alloys. J. Electroanal. Chem. 2002, 532, 35–42.

    Article  Google Scholar 

  97. Johnson, D. C.; Napp, D. T.; Bruckenstein, S. A ring-disk electrode study of the current/potential behaviour of platinum in 1.0 M sulphuric and 0.1 M perchloric acids. Electrochim. Acta 1970, 15, 1493–1509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFB1505800), the Guangzhou Key Research and Development Program (No. 202103040002), and the Green Tech Fund (No. GTF202020092). M. G. would like to acknowledge the support from the National Key R&D Program of China (No. 2022YFA1503900) and the Guangdong Scientific Program (No. 2019QN01L057).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng Gu or Minhua Shao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Xiao, F., Wang, J. et al. Highly active and durable core–shell electrocatalysts for proton exchange membrane fuel cells. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6297-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-023-6297-3

Keywords

Navigation