Skip to main content
Log in

Identification of LRG1 targeting peptide and its application in targeted imaging for breast cancer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Breast cancer remains a leading cause of morbidity and mortality among women worldwide, emphasizing the urgent need for enhanced diagnostic and therapeutic approaches. Leucine-rich-alpha-2-glycoprotein 1 (LRG1) has emerged as a notable target due to its markedly elevated expression in breast tumors, suggesting the viability of LRG1 as a theranostic target. In our study, we employed phage display technology to identify a peptide, termed ET, that binds to LRG1 with a dissociation constant of 48.4 µM. After modified with fluorescent cyanine dye, the ET peptide showcased effective tumor-targeting imaging across three different primary breast tumor models and a metastatic breast tumor model. We also undertook a comprehensive safety evaluation, which verified the good biosafety credentials of ET peptide. In summary, the ET peptide identified in this study shows effective LRG1-targeting ability both in vitro and in vivo, thus exhibiting immense potential for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, R. L.; Miller, K. D.; Wagle, N. S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48.

    Article  Google Scholar 

  2. Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M. H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020, 84, 106535.

    Article  CAS  Google Scholar 

  3. Waks, A. G.; Winer, E. P. Breast cancer treatment. JAMA 2019, 321, 288–300.

    Article  CAS  Google Scholar 

  4. Barnestein, R.; Galland, L.; Kalfeist, L.; Ghiringhelli, F.; Ladoire, S.; Limagne, E. Immunosuppressive tumor microenvironment modulation by chemotherapies and targeted therapies to enhance immunotherapy effectiveness. Oncoimmunology. 2022, 11, 2120676.

    Article  Google Scholar 

  5. Blakely, B.; Shin, S.; Jin, K. Overview of the therapeutic strategies for ER positive breast cancer. Biochem. Pharmacol. 2023, 212, 115552.

    Article  CAS  Google Scholar 

  6. Hong, R. X.; Xu, B. H. Breast cancer: An up-to-date review and future perspectives. Cancer Commun. (Lond.) 2022, 42, 913–936.

    Article  Google Scholar 

  7. Jacobs, A. T.; Castaneda-Cruz, M. D.; Rose, M. M.; Connelly, L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem. Pharmacol. 2022, 204, 115209.

    Article  CAS  Google Scholar 

  8. Goel, S.; Bergholz, J. S.; Zhao, J. J. Targeting CDK4 and CDK6 in cancer. Nat. Rev. Cancer 2022, 22, 356–372.

    Article  CAS  Google Scholar 

  9. Roskoski, R. Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol. Res. 2022, 175, 106037.

    Article  Google Scholar 

  10. Tsao, L. C.; Force, J.; Hartman, Z. C. Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Res. 2021, 81, 4641–4651.

    Article  CAS  Google Scholar 

  11. Trail, P. A.; Dubowchik, G. M.; Lowinger, T. B. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018, 181, 126–142.

    Article  CAS  Google Scholar 

  12. Muttenthaler, M.; King, G. F.; Adams, D. J.; Alewood, P. F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325.

    Article  CAS  Google Scholar 

  13. Yin, L.; Duan, J. J.; Bian, X. W.; Yu, S. C. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020, 22, 61.

    Article  Google Scholar 

  14. Marusyk, A.; Janiszewska, M.; Polyak, K. Intratumor heterogeneity: The Rosetta stone of therapy resistance. Cancer Cell 2020, 37, 471–484.

    Article  CAS  Google Scholar 

  15. Labrie, M.; Brugge, J. S.; Mills, G. B.; Zervantonakis, I. K. Therapy resistance: Opportunities created by adaptive responses to targeted therapies in cancer. Nat. Rev. Cancer. 2022, 22, 323–339.

    Article  CAS  Google Scholar 

  16. Haupt, H.; Baudner, S. Solation and characterization of an unknown, leucine-rich 3.1-S-alpha2-glycoprotein from human serum (author’s transl). Hoppe Seylers. Z. Physiol. Chem. 1977, 358, 639–646.

    Article  CAS  Google Scholar 

  17. Camilli, C.; Hoeh, A. E.; De Rossi, G.; Moss, S. E.; Greenwood, J. LRG1: An emerging player in disease pathogenesis. J. Biomed. Sci. 2022, 29, 6.

    Article  CAS  Google Scholar 

  18. Gao, Y.; Xie, Z. B.; Ho, C.; Wang, J.; Li, Q. F.; Zhang, Y. F.; Zhou, J. LRG1 promotes keratinocyte migration and wound repair through regulation of HIF-1α stability. J. Invest. Dermatol. 2020, 140, 455–464.

    Article  CAS  Google Scholar 

  19. Wang, X. M.; Abraham, S.; McKenzie, J. A. G.; Jeffs, N.; Swire, M.; Tripathi, V. B.; Luhmann, U. F. O.; Lange, C. A. K.; Zhai, Z. H.; Arthur, H. M. et al. LRG1 promotes angiogenesis by modulating endothelial TGF-β signalling. Nature 2013, 499, 306–311.

    Article  CAS  Google Scholar 

  20. Zhang, Q.; Huang, R.; Tang, Q. C.; Yu, Y.; Huang, Q. L.; Chen, Y. G.; Wang, G. Y.; Wang, X. S. Leucine-rich alpha-2-glycoprotein-1 is up-regulated in colorectal cancer and is a tumor promoter. OncoTargets Ther. 2018, 11, 2745–2752.

    Article  Google Scholar 

  21. Li, Z. F.; Zeng, C.; Nong, Q. H.; Long, F. H.; Liu, J. X.; Mu, Z. M.; Chen, B. K.; Wu, D.; Wu, H. Exosomal leucine-Rich-Alpha2-glycoprotein 1 derived from non-small-cell lung cancer cells promotes angiogenesis via TGF-β Signal pathway. Mol. Ther. Oncolyt. 2019, 14, 313–322.

    Article  CAS  Google Scholar 

  22. Xie, Z. B.; Zhang, Y. F.; Jin, C.; Mao, Y. S.; Fu, D. L. LRG-1 promotes pancreatic cancer growth and metastasis via modulation of the EGFR/p38 signaling. J. Exp. Clin. Cancer Res. 2019, 38, 75.

    Article  Google Scholar 

  23. Singhal, M.; Gengenbacher, N.; Pari, A. A. A.; Kamiyama, M.; Hai, L.; Kuhn, B. J.; Kallenberg, D. M.; Kulkarni, S. R.; Camilli, C.; Preuß, S. F. et al. Temporal multi-omics identifies LRG1 as a vascular niche instructor of metastasis. Sci. Transl. Med. 2021, 13, eabe6805.

    Article  Google Scholar 

  24. O’Connor, M. N.; Kallenberg, D. M.; Camilli, C.; Pilotti, C.; Dritsoula, A.; Jackstadt, R.; Bowers, C. E.; Watson, H. A.; Alatsatianos, M.; Ohme, J. et al. LRG1 destabilizes tumor vessels and restricts immunotherapeutic potency. Med. 2021, 2, 1231–1252.e10.

    Article  Google Scholar 

  25. Jemmerson, R.; Staskus, K.; Higgins, L.; Conklin, K.; Kelekar, A. Intracellular leucine-rich alpha-2-glycoprotein-1 competes with Apaf-1 for binding cytochrome c in protecting MCF-7 breast cancer cells from apoptosis. Apoptosis 2021, 26, 71–82.

    Article  CAS  Google Scholar 

  26. Zhang, Y. S.; Han, L.; Yang, C.; Liu, Y. J.; Zhang, X. M. Prognostic value of LRG1 in breast cancer: A retrospective study. Oncol. Res. Treat. 2021, 44, 36–42.

    Article  CAS  Google Scholar 

  27. Gutiérrez-Fernández, J.; Javaid, F.; De Rossi, G.; Chudasama, V.; Greenwood, J.; Moss, S. E.; Luecke, H. Structural basis of human LRG1 recognition by Magacizumab, a humanized monoclonal antibody with therapeutic potential. Acta Crystallogr. D Struct. Biol. 2022, 78, 725–734.

    Article  Google Scholar 

  28. Zhang, X. C.; Zhang, X. Y.; Gao, H. L.; Qing, G. Phage display derived peptides for Alzheimer’s disease therapy and diagnosis. Theranostics. 2022, 12, 2041–2062.

    Article  Google Scholar 

  29. Saw, P. E.; Song, E. W. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell 2019, 10, 787–807.

    Article  Google Scholar 

  30. Todaro, B.; Ottalagana, E.; Luin, S.; Santi, M. Targeting peptides: The new generation of targeted drug delivery systems. Pharmaceutics 2023, 15, 1648–1672.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Bing Jiang (Zhengzhou University) for assistance with the fluorescence imaging. The authors also thank the center of Advanced Analysis & Gene Sequencing, Zhengzhou University for technical assistance. This work was supported by grants from the National Natural Science Foundation of China (Nos. 32000998 and 32201240). The Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology (No. 2022HYTP046) and the China Postdoctoral Science Foundation (No. 2021TQ0298), and Science and Technology Development Project of Henan Province (Nos. 222102310525, 232102310351), and National College Students’ innovation and entrepreneurship training program (No. 202310459197).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyu Zhang, Huan Min or Yingqiu Qi.

Ethics declarations

Yingqiu Qi, Mengdie Chen, and Huan Min et al. have filed a patent application based on this work. In accordance with the Zhengzhou University procedures and our ethical obligations as researchers, we report that ET is named on patents that describe the targeting peptide exhibited a binding affinity to LRG1. Cy5-ET is also named on patents describing the probe of tumor targeting, and application for peptide drug conjugate and tumor therapy. We have disclosed those interests fully to the University of Zhengzhou, and we have in place an approved plan for managing any potential conflicts arising from licensing of our patents. The remaining authors declare no competing interests.

Electronic supplementary material

12274_2023_6268_MOESM1_ESM.pdf

Electronic Supplementary Material: Identification of LRG1 targeting peptide and its application in targeted imaging for breast cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Zhu, A., Zhu, F. et al. Identification of LRG1 targeting peptide and its application in targeted imaging for breast cancer. Nano Res. (2023). https://doi.org/10.1007/s12274-023-6268-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-023-6268-8

Keywords

Navigation