Skip to main content
Log in

Electrodes for Li-ion batteries: From high-voltage LiCoO2 to Co-reduced/Co-free layered oxides with potential anodes

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Li-ion batteries (LIBs) are one type of more and more widely used devices for energy storage and power supply in which cathode materials are playing a relatively more decisive role at current stage. In this review, we start with pioneeringly commercialized LiCoO2 (LCO) with a layered rhombohedral structure (space group \(R\bar 3m\)) to discuss novel sequentially emerging LCO-derived layered oxides from the perspectives of both cobalt content reduction and performance improvement. Emphasis is placed on the improvement of high-voltage performance of LCO and Co-reduced/free layered oxides, including Co-reduced high-nickel layered oxides, Co-free Li-rich layered oxides, and Ni-based layered oxides cathodes, and their underlying mechanisms via different strategies. Also, possibly matched carbon and silicon-based anode materials are briefly discussed. The common issues and prospects of the layered oxides cathodes and their potential anodes are summarized and commented on. This review can help understand the emergence logics of novel layered oxides with gradually vanishing cobalt involved, provide insights about the underlying mechanisms of performance enhancement pertaining to particular strategies, and even inspire the discovery of novel cathode materials with high performance and low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

    Google Scholar 

  2. Dong, Y. H.; Li, J. Oxide cathodes: Functions, instabilities, self healing, and degradation mitigations. Chem. Rev. 2023, 123, 811–833.

    CAS  Google Scholar 

  3. Xiang, J. W.; Wei, Y.; Zhong, Y.; Yang, Y.; Cheng, H.; Yuan, L. X.; Xu, H. H.; Huang, Y. H. Building practical high-voltage cathode materials for lithium-ion batteries. Adv. Mater. 2022, 34, 2200912.

    CAS  Google Scholar 

  4. Zeng, C.; Liang, J. N.; Cui, C.; Zhai, T. Y.; Li, H. Q. Dynamic investigation of battery materials via advanced visualization: From particle, electrode to cell level. Adv. Mater. 2022, 34, 2200777.

    CAS  Google Scholar 

  5. Zheng, J. X.; Archer, L. A. Crystallographically textured electrodes for rechargeable batteries: Symmetry, fabrication, and characterization. Chem. Rev. 2022, 122, 14440–14470.

    CAS  Google Scholar 

  6. Zhang, M. H.; Kitchaev, D. A.; Lebens-Higgins, Z.; Vinckeviciute, J.; Zuba, M.; Reeves, P. J.; Grey, C. P.; Whittingham, M. S.; Piper, L. F. J.; Van der Ven, A. et al. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. Nat. Rev. Mater. 2022, 7, 522–540.

    Google Scholar 

  7. Rehnlund, D.; Wang, Z. H.; Nyholm, L. Lithium-diffusion induced capacity losses in lithium-based batteries. Adv. Mater. 2022, 34, 2108827.

    CAS  Google Scholar 

  8. Nie, L.; Chen, S. J.; Liu, W. Challenges and strategies of lithium-rich layered oxides for Li-ion batteries. Nano Res. 2023, 16, 391–402.

    CAS  Google Scholar 

  9. Muralidharan, N.; Self, E. C.; Dixit, M.; Du, Z. J.; Essehli, R.; Amin, R.; Nanda, J.; Belharouak, I. Next-generation cobalt-free cathodes—A prospective solution to the battery industry’s cobalt problem. Adv. Energy Mater. 2022, 12, 2103050.

    CAS  Google Scholar 

  10. Gou, X. X.; Hao, Z. K.; Hao, Z. M.; Yang, G. J.; Yang, Z.; Zhang, X. Y.; Yan, Z. H.; Zhao, Q.; Chen, J. In situ surface self-reconstruction strategies in Li-rich Mn-based layered cathodes for energy-dense Li-ion batteries. Adv. Funct. Mater. 2022, 32, 2112088.

    CAS  Google Scholar 

  11. Zhang, W. J.; Chen, Y.; Xu, C. J.; Lin, C.; Tao, J. M.; Lin, Y. B.; Li, J. X.; Kolosov, O. V.; Huang, Z. G. Tunable electrical field-induced metal-insulator phase separation in LiCoO2 snapptic transistor operating in post-percolation region. Nano Energy 2023, 108, 108199.

    CAS  Google Scholar 

  12. Xu, S. Y.; Tan, X. H.; Ding, W. Y.; Ren, W. J.; Zhao, Q.; Huang, W. Y.; Liu, J. J.; Qi, R.; Zhang, Y. X.; Yang, J. C. et al. Promoting surface electric conductivity for high-rate LiCoO2. Angew. Chem., Int. Ed. 2023, 62, e202218595.

    CAS  Google Scholar 

  13. Tan, X. H.; Zhao, T. Q.; Song, L. T.; Mao, D. D.; Zhang, Y. X.; Fan, Z. W.; Wang, H. F.; Chu, W. G. Simultaneous near-surface trace doping and surface modifications by gas-solid reactions during one-pot synthesis enable stable high-voltage performance of LiCoO2. Adv. Energy Mater. 2022, 12, 2200008.

    CAS  Google Scholar 

  14. Tan, X. H.; Zhao, T. Q.; Guo, L. M.; Mao, D. D.; Song, L. T.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Impact of electrolyte-permeable microcracks in secondary particles on performance of high nickel layered oxides: Negative or positive. Mater. Today Energy 2022, 24, 100942.

    CAS  Google Scholar 

  15. Zhao, H.; Lam, W. Y. A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D. S.; Xu, H.; He, X. M. Cobalt- free cathode materials: Families and their prospects. Adv. Energy Mater. 2022, 12, 2103894.

    CAS  Google Scholar 

  16. Wang, J.; Yuan, Q.; Ren, Z. X.; Sun, C. H.; Zhang, J. F.; Wang, R.; Qian, M. M.; Shi, Q.; Shao, R. W.; Mu, D. B. et al. Thermochemical cyclization constructs bridged dual-coating of Ni-rich layered oxide cathodes for high-energy Li-ion batteries. Nano Lett. 2022, 22, 5221–5229.

    CAS  Google Scholar 

  17. Jiang, M.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. A review of degradation mechanisms and recent achievements for Ni-rich cathode-based Li-ion batteries. Adv. Energy Mater. 2021, 11, 2103005.

    CAS  Google Scholar 

  18. You, B. Z.; Wang, Z. X.; Shen, F.; Chang, Y. J.; Peng, W. J.; Li, X. H.; Guo, H. J.; Hu, Q. Y.; Deng, C. W.; Yang, S. et al. Research progress of single-crystal nickel-rich cathode materials for lithium ion batteries. Small Methods 2021, 5, 2100234.

    CAS  Google Scholar 

  19. Jia, K.; Wang, J. X.; Ma, J.; Liang, Z.; Zhuang, Z. F.; Ji, G. J.; Gao, R. H.; Piao, Z.; Li, C.; Zhou, G. M. et al. Suppressed lattice oxygen release via Ni/Mn doping from spent LiNi0.5Mn0.3Co0.2O2 toward high-energy layered-oxide cathodes. Nano Lett. 2022, 22, 8372–8380.

    CAS  Google Scholar 

  20. Zuo, Y. X.; Shang, H. F.; Hao, J. Z.; Song, J.; Ning, F. H.; Zhang, K.; He, L. H.; Xia, D. G. Regulating the potential of anion redox to reduce the voltage hysteresis of Li-rich cathode materials. J. Am. Chem. Soc. 2023, 145, 5174–5182.

    CAS  Google Scholar 

  21. Zhang, K.; Qi, J. Z.; Song, J.; Zuo, Y. X.; Yang, Y. L.; Yang, T. H.; Chen, T.; Liu, X.; Chen, L. W.; Xia, D. G. Sulfuration of Li-rich Mn-based cathode materials for multianionic redox and stabilized coordination environment. Adv. Mater. 2022, 34, 2109564.

    CAS  Google Scholar 

  22. Ding, X. K.; Luo, D.; Cui, J. X.; Xie, H. X.; Ren, Q. Q.; Lin, Z. An ultra-long-life lithium-rich Li1.2Mn0.6Ni0.2O2 cathode by three-in-one surface modification for lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 7778–7782.

    CAS  Google Scholar 

  23. Guo, L. M.; Tan, X. H.; Mao, D. D.; Zhao, T. Q.; Song, L. T.; Liu, Y. L.; Kang, X. H.; Wang, H. F.; Sun, L. F.; Chu, W. G. Improved electrochemical activity of the Li2MnO3-like superstructure in high-nickel Li-rich layered oxide Li1.2Ni0.4Mn0.4O2 and its enhanced performances via tungsten doping. Electrochim. Acta 2021, 370, 137808.

    CAS  Google Scholar 

  24. Mao, D. D.; Tan, X. H.; Guo, L. M.; Zhao, T. Q.; Fan, Z. W.; Song, L. T.; Zhang, Y. X.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Lithium antievaporation-loss engineering via sodium/potassium doping enables superior electrochemical performance of high-nickel Lirich layered oxide cathodes. ACS Appl. Mater. Interfaces 2022, 14, 19594–19603.

    CAS  Google Scholar 

  25. Chen, J. N.; Yang, Y.; Tang, Y. S.; Wang, Y. F.; Li, H.; Xiao, X. H.; Wang, S. N.; Dewi Darma, M. S.; Etter, M.; Missyul, A. et al. Constructing a thin disordered self-protective layer on the LiNiO2 primary particles against oxygen release. Adv. Funct. Mater. 2023, 33, 2211515.

    CAS  Google Scholar 

  26. Zaker, N.; Geng, C. X.; Rathore, D.; Hamam, I.; Chen, N.; Xiao, P. H.; Yang, C. Y.; Dahn, J. R.; Botton, G. A. Probing the mysterious behavior of tungsten as a dopant inside pristine cobalt-free nickel-rich cathode materials. Adv. Funct. Mater. 2023, 33, 2211178.

    CAS  Google Scholar 

  27. Tian, R. Y.; Liu, G. Y.; Liu, H. Q.; Zhang, L. N.; Gu, X. H.; Guo, Y. J.; Wang, H. F.; Sun, L. F.; Chu, W. G. Very high power and superior rate capability LiFePO4 nanorods hydrothermally synthesized using tetraglycol as surfactant. RSC Adv. 2015, 5, 1859–1866.

    CAS  Google Scholar 

  28. Tian, R. Y.; Liu, H. Q.; Jiang, Y.; Chen, J. K.; Tan, X. H.; Liu, G. Y.; Zhang, L. N.; Gu, X. H.; Guo, Y. J.; Wang, H. F. et al. Drastically enhanced high-rate performance of carbon-coated LiFePO4 nanorods using a green chemical vapor deposition (CVD) method for lithium ion battery: A selective carbon coating process. ACS Appl. Mater. Interfaces 2015, 7, 11377–11386.

    CAS  Google Scholar 

  29. Liu, H. Q.; Jiang, Y.; Tan, X. H.; Chen, J. K.; Guo, Y. J.; Wang, H. F.; Chu, W. G. Synthesis of well-crystallized, high-performance LiNi0.5Mn1.5O4 octahedra as lithium-ion-battery electrode promoted by metal manganese powders. Energy Technol. 2017, 5, 414–421.

    CAS  Google Scholar 

  30. Ji, H. W.; Urban, A.; Kitchaev, D. A.; Kwon, D. H.; Artrith, N.; Ophus, C.; Huang, W. X.; Cai, Z. J.; Shi, T.; Kim, J. C. et al. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. Nat. Commun. 2019, 10, 592.

    CAS  Google Scholar 

  31. Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.

    CAS  Google Scholar 

  32. Zhang, W. J.; Yuan, C. H.; Zhu, J. F.; Jin, T.; Shen, C.; Xie, K. Y. Air instability of Ni-rich layered oxides-a roadblock to large scale application. Adv. Energy Mater. 2023, 13, 2202993.

    CAS  Google Scholar 

  33. Ju, X. K.; Hou, X.; Liu, Z. Q.; Du, L. L.; Zhang, L.; Xie, T. T.; Paillard, E.; Wang, T. H.; Winter, M.; Li, J. Revealing the effect of high Ni content in Li-rich cathode materials: Mitigating voltage decay or increasing intrinsic reactivity. Small 2023, 19, 2207328.

    CAS  Google Scholar 

  34. Kwon, S. N.; Song, M. Y.; Park, H. R. Electrochemical properties of LiNiO2 substituted by Al or Ti for Ni via the combustion method. Ceram. Int. 2014, 40, 14141–14147.

    CAS  Google Scholar 

  35. Zhang, J. X.; Wang, P. F.; Bai, P. X.; Wan, H. L.; Liu, S. F.; Hou, S.; Pu, X. J.; Xia, J. L.; Zhang, W. R.; Wang, Z. Y. et al. Interfacial design for a 4.6 V high-voltage single-crystalline LiCoO2 cathode. Adv. Mater. 2022, 34, 2108353.

    CAS  Google Scholar 

  36. Yang, X. R.; Wang, C. W.; Yan, P. F.; Jiao, T. P.; Hao, J. L.; Jiang, Y. Y.; Ren, F. C.; Zhang, W. G.; Zheng, J. M.; Cheng, Y. et al. Pushing lithium cobalt oxides to 4.7 V by lattice-matched interfacial engineering. Adv. Energy Mater. 2022, 12, 2200197.

    CAS  Google Scholar 

  37. Qin, Y. P.; Xu, K. Y.; Wang, Q.; Ge, M. H.; Cheng, T.; Liu, M.; Cheng, H. Y.; Hu, Y. B.; Shen, C.; Wang, D. Y. et al. In-situ constructing a rigid and stable dual-layer CEI film improving highvoltage 4.6 V LiCoO2 prrfbrmnnees. Nano Energy 2022, 96, 107082

    CAS  Google Scholar 

  38. Ruan, D. G.; Chen, M.; Wen, X. Y.; Li, S. Q.; Zhou, X. G.; Che, Y. X.; Chen, J. K.; Xiang, W. J.; Li, S. L.; Wang, H. et al. In situ constructing a stable interface film on high-voltage LiCoO2 cathode via a novel electrolyte additive. Nano Energy 2021, 90, 106535

    CAS  Google Scholar 

  39. Tan, X. H.; Mao, D. D.; Zhao, T. Q.; Zhang, Y. X.; Song, L. T.; Fan, Z. W.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Long-term highly stable high-voltage LiCoO2 synthesized via a solid sulfur-assisted one-pot approach. Small 2022, 18, 2202143.

    CAS  Google Scholar 

  40. Liu, J. X.; Wang, J. Q.; Ni, Y. X.; Liu, J. D.; Zhang, Y. D.; Lu, Y.; Yan, Z. H.; Zhang, K.; Zhao, Q.; Cheng, F. Y. et al. Tuning interphase chemistry to stabilize high-voltage LiCoO2 cathode material via spinel coating. Angew. Chem., Int. Ed. 2022, 61, e202207000.

    CAS  Google Scholar 

  41. Huang, H.; Li, Z. Q.; Gu, S.; Bian, J. C.; Li, Y. Z.; Chen, J. J.; Liao, K. M.; Gan, Q. M.; Wang, Y. F.; Wu, S. S. et al. Dextran sulfate lithium as versatile binder to stabilize high-voltage LiCoO2 to 4.6 V. Adv. Energy Mater. 2021, 11, 2101864.

    CAS  Google Scholar 

  42. Zhang, Y. X.; Kim, J. C.; Song, H. W.; Lee, S. Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries. Nanoscale 2023, 15, 4195–4218.

    CAS  Google Scholar 

  43. Jamil, S.; Li, C. M.; Fasehullah, M.; Liu, P.; Xiao, F. Y.; Wang, H.; Bao, S. J.; Xu, M. W. Ni/Li antisite induced disordered passivation layer for high-Ni layered oxide cathode material. Energy Storage Mater. 2022, 45, 720–729.

    Google Scholar 

  44. Hyun, H.; Jeong, K.; Hong, H.; Seo, S.; Koo, B.; Lee, D.; Choi, S.; Jo, S.; Jung, K.; Cho, H. H. et al. Suppressing high-current-induced phase separation in Ni-rich layered oxides by electrochemically manipulating dynamic lithium distribution. Adv. Mater. 2021, 33, 2105337.

    CAS  Google Scholar 

  45. Yan, P. F.; Zheng, J. M.; Liu, J.; Wang, B. Q.; Cheng, X. P.; Zhang, Y. F.; Sun, X. L.; Wang, C. M.; Zhang, J. G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nat. Energy 2018, 3, 600–605.

    CAS  Google Scholar 

  46. Xu, G. L.; Liu, Q.; Lau, K. K. S.; Liu, Y. Z.; Liu, X.; Gao, H.; Zhou, X. W.; Zhuang, M. H.; Ren, Y.; Li, J. D. et al. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nat. Energy 2019, 4, 484–494.

    CAS  Google Scholar 

  47. Deng, T.; Fan, X. L.; Cao, L. S.; Chen, J.; Hou, S.; Ji, X.; Chen, L.; Li, S.; Zhou, X. Q.; Hu, E. Y. et al. Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries. Joule 2019, 3, 2550–2564.

    CAS  Google Scholar 

  48. Ober, S.; Mesnier, A.; Manthiram, A. Surface stabilization of cobalt-free LiNiO2 with niobium for lithium-ion batteries. ACS Appl. Mater. Interfaces 2023, 15, 1442–1451.

    CAS  Google Scholar 

  49. Mohan, P.; Kalaignan, G. P. Structure and electrochemical performance of LiFexNi1−xO2 (0.00 ≤ x ≤ 0.20) cathode materials for rechargeable lithium-ion batteries. J. Electroceram. 2013, 31, 210–217.

    CAS  Google Scholar 

  50. Yoon, C. S.; Jun, D. W.; Myung, S. T.; Sun, Y. K. Structural stability of LiNiO2 cycled above 4.2 V. ACS Energy Lett. 2017, 2, 1150–1155.

    CAS  Google Scholar 

  51. Bianchini, M.; Roca-Ayats, M.; Hartmann, P.; Brezesinski, T.; Janek, J. There and back again-the journey of LiNiO2 as a cathode active material. Angew. Chem., Int. Ed. 2019, 58, 10434–10458.

    CAS  Google Scholar 

  52. Chen, J.; Zou, G. Q.; Deng, W. T.; Huang, Z. D.; Gao, X.; Liu, C.; Yin, S. Y.; Liu, H. Q.; Deng, X. L.; Tian, Y. et al. Pseudo-bonding and electric-field harmony for Li-rich Mn-based oxide cathode. Adv. Funct. Mater. 2020, 30, 2004302.

    CAS  Google Scholar 

  53. He, W.; Liu, P. F.; Qu, B. H.; Zheng, Z. M.; Zheng, H. F.; Deng, P.; Li, P.; Li, S. Y.; Huang, H.; Wang, L. S. et al. Uniform Na+ doping-induced defects in Li- and Mn-rich cathodes for high-performance lithium-ion batteries. Adv. Sci. 2019, 6, 1802114.

    Google Scholar 

  54. Li, X.; Qiao, Y.; Guo, S. H.; Xu, Z. M.; Zhu, H.; Zhang, X. Y.; Yuan, Y.; He, P.; Ishida, M.; Zhou, H. S. Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 2018, 30, 1705197.

    Google Scholar 

  55. Guo, L. M.; Tan, X. H.; Liu, S. N.; Wu, J. X.; Ren, J. C.; Zhao, T. Q.; Kang, X. H.; Wang, H. F.; Chu, W. G. Considerable capacity increase of high-nickel lithium-rich cathode materials by effectively reducing oxygen loss and activating Mn4+/3+ redox couples via Mo doping. J. Alloys Compd. 2019, 790, 170–178.

    CAS  Google Scholar 

  56. Zhang, H. L.; Liu, H.; Piper, L. F. J.; Whittingham, M. S.; Zhou, G. W. Oxygen loss in layered oxide cathodes for Li-ion batteries: Mechanisms, effects, and mitigation. Chem. Rev. 2022, 122, 5641–5681.

    CAS  Google Scholar 

  57. Huang, Y. Y.; Zhu, Y. C.; Fu, H. Y.; Ou, M. Y.; Hu, C. C.; Yu, S. J.; Hu, Z. W.; Chen, C. T.; Jiang, G.; Gu, H. K. et al. Mg-pillared LiCoO2: Towards stable cycling at 4.6 V. Angew. Chem., Int. Ed. 2021, 60, 4682–4688.

    CAS  Google Scholar 

  58. Wang, L.; Yang, Z. Z.; Samarakoon, W. S.; Zhou, Y. D.; Bowden, M. E.; Zhou, H.; Tao, J. H.; Zhu, Z. H.; Lahiri, N.; Droubay, T. C. et al. Spontaneous lithiation of binary oxides during epitaxial growth on LiCoO2. Nano Lett. 2022, 22, 5530–5537.

    CAS  Google Scholar 

  59. Xia, J.; Zhang, N.; Yang, Y. J.; Chen, X.; Wang, X.; Pan, F.; Yao, J. N. Lanthanide contraction builds better high-voltage LiCoO2 batteries. Adv. Funct. Mater. 2022, 33, 2212869.

    Google Scholar 

  60. Hu, B.; Lou, X. B.; Li, C.; Geng, F. S.; Zhao, C.; Wang, J. Y.; Shen, M.; Hu, B. W. Reversible phase transition enabled by binary Ba and Ti-based surface modification for high voltage LiCoO2 cathode. J. Power Sources 2019, 438, 226954.

    CAS  Google Scholar 

  61. Cheng, J. H.; Pan, C. J.; Nithya, C.; Thirunakaran, R.; Gopukumar, S.; Chen, C. H.; Lee, J. F.; Chen, J. M.; Sivashanmugam, A.; Hwang, B. J. Effect of Mg doping on the local structure of LiMgyCo1−yO2 cathode material investigated by X-ray absorption spectroscopy. J. Power Sources 2014, 252, 292–297.

    CAS  Google Scholar 

  62. Umair, M.; Nazir, G.; Murtaza, G.; Elamin, N. Y.; Muhammad, N.; Amin, M. A.; Somaily, H. H. Synthesis and characterization of Al and Zr-dual-doped lithium cobalt oxide cathode for Li-ion batteries using a facile hydrothermal approach. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 641, 128493.

    CAS  Google Scholar 

  63. Kong, W. J.; Wong, D.; An, K.; Zhang, J. C.; Chen, Z. H.; Schulz, C.; Xu, Z. J.; Liu, X. F. Stabilizing the anionic redox in 4.6 V LiCoO2 cathode through adjusting oxygen magnetic moment. Adv. Funct. Mater. 2022, 32, 2202679.

    CAS  Google Scholar 

  64. Tan, X. H.; Chen, Z. F.; Liu, T. C.; Zhang, Y. X.; Zhang, M. J.; Li, S. N.; Chu, W. G.; Liu, K.; Yang, P. H.; Pan, F. Imitating architectural mortise-tenon structure for stable Ni-rich layered cathodes. Adv. Mater. 2022, 35, 2301096.

    Google Scholar 

  65. Fan, X. M.; Ou, X.; Zhao, W. G.; Liu, Y.; Zhang, B.; Zhang, J. F.; Zou, L. F.; Seidl, L.; Li, Y. Z.; Hu, G. R. et al. In situ inorganic conductive network formation in high-voltage single-crystal Ni-rich cathodes. Nat. Commun. 2021, 12, 5320.

    CAS  Google Scholar 

  66. Zou, L. H.; Zhang, Y.; Wang, F.; Zhou, B. L.; Wang, Z. Y. Improving the cycle performance of LiNi0.5Co0.3Mn0.2O2 cathode material for lithium-ion batteries by carbon coating. Integr. Ferroelectr. 2012, 147, 103–109.

    Google Scholar 

  67. Ruff, Z.; Coates, C. S.; Märker, K.; Mahadevegowda, A.; Xu, C.; Penrod, M. E.; Ducati, C.; Grey, C. P. O3 to O1 phase transitions in highly delithiated NMC811 at elevated temperatures. Chem. Mater. 2022, 35, 4979–4987.

    Google Scholar 

  68. Kong, W. J.; Zhang, J. C.; Wong, D.; Yang, W. Y.; Yang, J. B.; Schulz, C.; Liu, X. F. Tailoring Co3d and O2p band centers to inhibit oxygen escape for stable 4.6 V LiCoO2 cathodes. Angew. Chem., Int. Ed. 2021, 60, 27102–27112.

    CAS  Google Scholar 

  69. Kim, S.; Cho, W.; Zhang, X. B.; Oshima, Y.; Choi, J. W. A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 2016, 7, 13598.

    CAS  Google Scholar 

  70. Rozier, P.; Tarascon, J. M. Review-Li- rich layered oxide cathodes for next-generation Li-ion batteries: Chances and challenges. J. Electrochem. Soc. 2015, 162, A2490–A2499.

    CAS  Google Scholar 

  71. Koichi, N.; Chie, S.; Shoji, Y. Synthesis of solid solutions in a system of LiCoO2-Li2MnO3 for cathode materials of secondary lithium batteries. Chem. Lett. 1997, 26, 725–726.

    Google Scholar 

  72. Yi, T. F.; Tao, W.; Chen, B.; Zhu, Y. R.; Yang, S. Y.; Xie, Y. High-performance xLi2MnO3·(1−x)LiMn1/3Co1/3Ni1/3O2 (0.1 × 0.5) as cathode material for lithium-ion battery. Electrochim. Acta 2016, 188, 686–695.

    CAS  Google Scholar 

  73. Liu, Q. M.; Zhu, H. L.; Liu, J.; Liao, X. W.; Tang, Z. L.; Zhou, C. K.; Yuan, M. M.; Duan, J. F.; Li, L. J.; Chen, Z. Y. High-performance lithium-rich layered oxide material: Effects of preparation methods on microstructure and electrochemical properties. Materials 2020, 13, 334.

    CAS  Google Scholar 

  74. Luo, D.; Cui, J. X.; Zhang, B. K.; Fan, J. M.; Liu, P. Z.; Ding, X. K.; Xie, H. X.; Zhang, Z. H.; Guo, J. J.; Pan, F. et al. Ti-based surface integrated layer and bulk doping for stable voltage and long life of Li-rich layered cathodes. Adv. Funct. Mater. 2021, 31, 2009310.

    CAS  Google Scholar 

  75. Shao, Q. N.; Gao, P. Y.; Yan, C. H.; Gao, M. X.; Du, W. B.; Chen, J.; Yang, Y. X.; Gan, J. T.; Wu, Z. J.; Zhang, C. Y. et al. A redox couple strategy enables long-cycling Li- and Mn-rich layered oxide cathodes by suppressing oxygen release. Adv. Mater. 2022, 34, 2108543.

    CAS  Google Scholar 

  76. Song, J.; Ning, F. H.; Zuo, Y. X.; Li, A.; Wang, H. C.; Zhang, K.; Yang, T. H.; Yang, Y. L.; Gao, C.; Xiao, W. K. et al. Entropy stabilization strategy for enhancing the local structural adaptability of Li-rich cathode materials. Adv. Mater. 2022, 35, 2208726.

    Google Scholar 

  77. Yang, X. X.; Wang, S. N.; Han, D. Z.; Wang, K.; Tayal, A.; Baran, V.; Missyul, A.; Fu, Q.; Song, J. X.; Ehrenberg, H. et al. Structural origin of suppressed voltage decay in single-crystalline Li-rich layered Li[Li02Ni02Mn06]O2 cathodes. Small 2022, 18, 2201522.

    CAS  Google Scholar 

  78. Boivin, E.; Guerrini, N.; House, R. A.; Lozano, J. G.; Jin, L. Y.; Rees, G. J.; Somerville, J. W.; Kuss, C.; Roberts, M. R.; Bruce, P. G. The role of Ni and Co in suppressing O-loss in Li-rich layered cathodes. Adv. Funct. Mater. 2021, 31, 2003660.

    CAS  Google Scholar 

  79. Chai, K.; Zhang, J. C.; Li, Q. Y.; Wong, D.; Zheng, L. R.; Schulz, C.; Bartkowiak, M.; Smirnov, D.; Liu, X. F. Facilitating reversible cation migration and suppressing O2 escape for high performance Li-rich oxide cathodes. Small 2022, 18, 2201014.

    CAS  Google Scholar 

  80. Zheng, H. F.; Zhang, C. Y.; Zhang, Y. G.; Lin, L.; Liu, P. F.; Wang, L. S.; Wei, Q. L.; Lin, J.; Sa, B.; Xie, Q. S. et al. Manipulating the local electronic structure in Li-rich layered cathode towards superior electrochemical performance. Adv. Funct. Mater. 2021, 31, 2100783.

    CAS  Google Scholar 

  81. Huang, J. P.; Ouyang, B.; Zhang, Y. Q.; Yin, L.; Kwon, D. H.; Cai, Z. J.; Lun, Z.; Zeng, G. B.; Balasubramanian, M.; Ceder, G. Inhibiting collective cation migration in Li-rich cathode materials as a strategy to mitigate voltage hysteresis. Nat. Mater. 2022, 22, 353–361.

    Google Scholar 

  82. Ding, X.; Li, Y. X.; Wang, S.; Dong, J. M.; Yasmin, A.; Hu, Q.; Wen, Z. Y.; Chen, C. H. Towards improved structural stability and electrochemical properties of a Li-rich material by a strategy of double gradient surface modification. Nano Energy 2019, 61, 411–419.

    CAS  Google Scholar 

  83. Hy, S.; Felix, F.; Rick, J.; Su, W. N.; Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1−2x)/3Mn(2−x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 2014, 136, 999–1007.

    CAS  Google Scholar 

  84. Luo, K.; Roberts, M. R.; Hao, R.; Guerrini, N.; Pickup, D. M.; Liu, Y. S.; Edström, K.; Guo, J. H.; Chadwick, A. V.; Duda, L. C. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 2016, 8, 684–691.

    CAS  Google Scholar 

  85. Hua, W. B.; Wang, S. N.; Knapp, M.; Leake, S. J.; Senyshyn, A.; Richter, C.; Yavuz, M.; Binder, J. R.; Grey, C. P.; Ehrenberg, H. et al. Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun. 2019, 10, 5365.

    Google Scholar 

  86. Hua, W. B.; Yang, X. X.; Casati, N. P. M.; Liu, L. J.; Wang, S. N.; Baran, V.; Knapp, M.; Ehrenberg, H.; Indris, S. Probing thermally-induced structural evolution during the synthesis of layered Li-, Na, or K-containing 3d transition-metal oxides. eScience 2022, 2, 183–191.

    Google Scholar 

  87. Zhang, C. X.; Wei, B.; Wang, M. Y.; Zhang, D. T.; Uchiyama, T.; Liang, C. P.; Chen, L. B.; Uchimoto, Y.; Zhang, R. F.; Wang, P. et al. Regulating oxygen covalent electron localization to enhance anionic redox reversibility of lithium-rich layered oxide cathodes. Energy Storage Mater. 2022, 46, 512–522.

    Google Scholar 

  88. Chong, S. K.; Liu, Y. N.; Yan, W. W.; Chen, Y. Z. Effect of valence states of Ni and Mn on the structural and electrochemical properties of Li1.2NixMn0.8−xO2 cathode materials for lithium-ion batteries. RSC Adv. 2016, 6, 53662–53668.

    CAS  Google Scholar 

  89. Kim, U. H.; Park, G. T.; Son, B. K.; Nam, G. W.; Liu, J.; Kuo, L. Y.; Kaghazchi, P.; Yoon, C. S.; Sun, Y. K. Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nat. Energy 2020, 5, 860–869.

    CAS  Google Scholar 

  90. Mao, D. D.; Tan, X. H.; Fan, Z. W.; Song, L. T.; Zhang, Y. X.; Zhang, P.; Su, S.; Liu, G. Y.; Wang, H. F.; Chu, W. G. Unveiling the roles of trace Fe and F Co-doped into high-Ni Li-rich layered oxides in performance improvement. ACS Appl. Mater. Interfaces 2022, 15, 10774–10784.

    Google Scholar 

  91. Shen, K.; Xu, X. J.; Tang, Y. P. Recent progress of magnetic field application in lithium-based batteries. Nano Energy 2022, 92, 106703.

    CAS  Google Scholar 

  92. Han, Y. K.; Lei, Y. K.; Ni, J.; Zhang, Y. C.; Geng, Z.; Ming, P. W.; Zhang, C. M.; Tian, X. R.; Shi, J. L.; Guo, Y. G. et al. Single-crystalline cathodes for advanced Li-ion batteries: Progress and challenges. Small 2022, 18, 2107048.

    CAS  Google Scholar 

  93. Jing, Z. W.; Wang, S. N.; Fu, Q.; Baran, V.; Tayal, A.; Casati, N. P. M.; Missyul, A.; Simonelli, L.; Knapp, M.; Li, F. J. et al. Architecting “Li-rich Ni-rich” core-shell layered cathodes for high-energy Li-ion batteries. Energy Storage Mater. 2022, 59, 102775.

    Google Scholar 

  94. Dahn, J. R.; von Sacken, U.; Michal, C. A. Structure and electrochemistry of Li1+yNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure. Solid State Ionics 1990, 44, 87–97.

    CAS  Google Scholar 

  95. Dutta, G.; Manthiram, A.; Goodenough, J. B.; Grenier, J. C. Chemical synthesis and properties of Li1−δxNi1+δO2 and Li[Ni2]O4. J. Solid State Chem. 1992, 96, 123–131.

    CAS  Google Scholar 

  96. Bruce, P. G.; Lisowska-Oleksiak, A.; Saidi, M. Y.; Vincent, C. A. Vacancy diffusion in the intercalation electrode Li1−xNiO2. Solid State Ionics 1992, 57, 353–358.

    CAS  Google Scholar 

  97. Cui, Z. H.; Guo, Z. Z.; Manthiram, A. Assessing the intrinsic roles of key dopant elements in high-nickel layered oxide cathodes in lithium-based batteries. Adv. Energy Mater. 2022, 13, 2203853.

    Google Scholar 

  98. Yuwono, R. A.; Wang, F. M.; Wu, N. L.; Chen, Y. C.; Chen, H.; Chen, J. M.; Haw, S. C.; Lee, J. F.; Xie, R. K.; Sheu, H. S. et al. Evaluation of LiNiO2 with minimal cation mixing as a cathode for Li-ion batteries. Chem. Eng. J. 2022, 456, 141065.

    Google Scholar 

  99. Kim, M.; Zou, L. F.; Son, S. B.; Bloom, I. D.; Wang, C. M.; Chen, G. Y. Improving LiNiO2 cathode performance through particle design and optimization. J. Mater. Chem. A 2022, 10, 12890–12899.

    CAS  Google Scholar 

  100. Goonetilleke, D.; Mazilkin, A.; Weber, D.; Ma, Y.; Fauth, F.; Janek, J.; Brezesinski, T.; Bianchini, M. Single step synthesis of W-modified LiNiO2 using an ammonium tungstate flux. J. Mater. Chem. A 2022, 10, 7841–7855.

    CAS  Google Scholar 

  101. Geng, C. X.; Rathore, D.; Heino, D.; Zhang, N.; Hamam, I.; Zaker, N.; Botton, G. A.; Omessi, R.; Phattharasupakun, N.; Bond, T. et al. Mechanism of action of the tungsten dopant in LiNiO2 positive electrode materials. Adv. Energy Mater. 2022, 12, 2103067.

    CAS  Google Scholar 

  102. Liu, Z. C.; Zhen, H. H.; Kim, Y.; Liang, C. D. Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level. J. Power Sources 2011, 196, 10201–10206.

    CAS  Google Scholar 

  103. Cho, J.; Kim, T. J.; Kim, Y. J.; Park, B. High-performance ZrO2-coated LiNiO2 cathode materials. Electrochem. Solid-State Lett. 2001, 4, A159–A161.

    CAS  Google Scholar 

  104. Kang, J.; Han, B. First- principles study on the thermal stability of LiNiO2 materials coated by amorphous Al2O3 with atomic layer thickness. ACS Appl. Mater. Interfaces 2015, 7, 11599–11603.

    CAS  Google Scholar 

  105. Mohan, P.; Kalaignan, G. P. Electrochemical behaviour of surface modified SiO2-coated LiNiO2 cathode materials for rechargeable lithium-ion batteries. J. Nanosci. Nanotechnol. 2012, 13, 2765–2770.

    Google Scholar 

  106. Kaneda, H.; Furuichi, Y.; Ikezawa, A.; Arai, H. Effects of aluminum substitution in nickel-rich layered LiNixAl1−xO2 (x = 0.92, 0.95) positive electrode materials for Li-ion batteries on highrate cycle performance. J. Mater. Chem. A 2021, 9, 21981–21994.

    CAS  Google Scholar 

  107. Zhang, Q. H.; Su, Y. W.; Shi, Z. X.; Yang, X. Z.; Sun, J. Y. Artificial interphase layer for stabilized Zn anodes: Progress and prospects. Small 2022, 18, 2203583.

    CAS  Google Scholar 

  108. Yu, T.; Yang, H. C.; Cheng, H. M.; Li, F. Theoretical progress of 2D six-membered-ring inorganic materials as anodes for nonlithium-ion batteries. Small 2022, 18, 2107868.

    CAS  Google Scholar 

  109. Xu, J. K.; Lei, J. F.; Ming, N. N.; Zhang, C. T.; Huo, K. F. Rational design of wood-structured thick electrode for electrochemical energy storage. Adv. Funct. Mater. 2022, 32, 2204426.

    CAS  Google Scholar 

  110. Xu, G. Y.; Zhu, C. Y.; Gao, G. Recent progress of advanced conductive metal-organic frameworks: Precise synthesis, electrochemical energy storage applications, and future challenges. Small 2022, 18, 2203140.

    CAS  Google Scholar 

  111. Wu, M. C.; Zheng, W. Y.; Hu, X.; Zhan, F. Y.; He, Q. Q.; Wang, H. Y.; Zhang, Q. C.; Chen, L. Y. Exploring 2D energy storage materials: Advances in structure, synthesis, optimization strategies, and applications for monovalent and multivalent metal-ion hybrid capacitors. Small 2022, 18, 2205101.

    CAS  Google Scholar 

  112. Wang, Z.; Pan, F.; Zhao, Q.; Lv, M. L.; Zhang, B. The application of covalent organic frameworks in lithium-sulfur batteries: A mini review for current research progress. Front. Chem. 2022, 10, 1055649.

    CAS  Google Scholar 

  113. Ren, X. H.; Wang, H. Y.; Chen, J.; Xu, W. L.; He, Q. Q.; Wang, H. Y.; Zhan, F. Y.; Chen, S. W.; Chen, L. Y. Emerging 2D copper-based materials for energy storage and conversion: A review and perspective. Small 2023, 19, 2204121.

    CAS  Google Scholar 

  114. Xie, L. J.; Tang, C.; Bi, Z. H.; Song, M. X.; Fan, Y. F.; Yan, C.; Li, X. M.; Su, F. Y.; Zhang, Q.; Chen, C. M. Hard carbon anodes for next-generation Li-ion batteries: Review and perspective. Adv. Energy Mater. 2021, 11, 2101650.

    CAS  Google Scholar 

  115. Shen, Y. F.; Qian, J. F.; Yang, H. X.; Zhong, F. P.; Ai, X. P. Chemically prelithiated hard-carbon anode for high power and high capacity Li-ion batteries. Small 2020, 16, 1907602.

    CAS  Google Scholar 

  116. Zhuo, R. F.; Quan, W. W.; Huang, X. Z.; He, Q.; Sun, Z. G.; Zhang, Z. Y.; Wang, J. Well- dispersed tin nanoparticles encapsulated in amorphous carbon tubes as high-performance anode for lithium ion batteries. Nanotechnology 2021, 32, 145402.

    CAS  Google Scholar 

  117. Xu, Z. W.; Wang, Y.; Liu, M. Y.; Sarwar, M. K.; Zhao, Y. X. Defects enriched cobalt molybdate induced by carbon dots for a high rate Li-ion battery anode. Nanotechnology 2022, 33, 075402.

    CAS  Google Scholar 

  118. Permana, A. D. C.; Omar, A.; Gonzalez-Martinez, I. G.; Oswald, S.; Giebeler, L.; Nielsch, K.; Mikhailova, D. MOF-derived onionlike carbon with superior surface area and porosity for high performance lithium-ion capacitors. Batt. Supercaps 2022, 5, e202100353.

    Google Scholar 

  119. Gao, C. W.; Jiang, Z. J.; Qi, S. B.; Wang, P. X.; Jensen, L. R.; Johansen, M.; Christensen, C. K.; Zhang, Y. F.; Ravnsbæk, D. B.; Yue, Y. Z. Metal- organic framework glass anode with an exceptional cycling-induced capacity enhancement for lithium-ion batteries. Adv. Mater. 2022, 34, 2110048.

    CAS  Google Scholar 

  120. Zhao, L. F.; Hu, Z.; Lai, W. H.; Tao, Y.; Peng, J.; Miao, Z. C.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Hard carbon anodes: Fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts. Adv. Energy Mater. 2021, 11, 2002704.

    CAS  Google Scholar 

  121. Ha, S.; Hyun, J. C.; Kwak, J. H.; Lim, H. D.; Yun, Y. S. Hierarchically nanoporous 3D assembly composed of functionalized onion-like graphitic carbon nanospheres for anode-minimized Li metal batteries. Small 2020, 16, 2003918.

    CAS  Google Scholar 

  122. Chai, Y. J.; Du, Y. H.; Li, L.; Wang, N. Dual metal oxides interconnected by carbon nanotubes for high-capacity Li- and Na-ion batteries. Nanotechnology 2020, 31, 215402.

    CAS  Google Scholar 

  123. Xie, Y. W.; Zhang, H. Y.; Yu, J. L.; Liu, Z. J.; Zhang, S. S.; Shao, H. Y.; Cao, Y. L.; Huang, X. F.; Li, S. K. A novel dendrite-free lithium metal anode via oxygen and boron codoped honeycomb carbon skeleton. Small 2022, 18, 2104876.

    CAS  Google Scholar 

  124. Liu, R. Q.; Xu, S. S.; Shao, X. X.; Wen, Y.; Shi, X. R.; Hu, J.; Yang, Z. Carbon coating on metal oxide materials for electrochemical energy storage. Nanotechnology 2021, 32, 502004.

    CAS  Google Scholar 

  125. Olsson, E.; Yu, J. L.; Zhang, H. Y.; Cheng, H. M.; Cai, Q. Atomic-scale design of anode materials for alkali metal (Li/Na/K)-ion batteries: Progress and perspectives. Adv. Energy Mater. 2022, 12, 2200662.

    CAS  Google Scholar 

  126. Chen, K. H.; Goel, V.; Namkoong, M. J.; Wied, M.; Müller, S.; Wood, V.; Sakamoto, J.; Thornton, K.; Dasgupta, N. P. Enabling 6C fast charging of Li-ion batteries with graphite/hard carbon hybrid anodes. Adv. Energy Mater. 2021, 11, 2003336.

    CAS  Google Scholar 

  127. Xu, H. R.; Zhao, L. L.; Liu, X. M.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Metal-organic-framework derived core-shell N-doped carbon nanocages embedded with cobalt nanoparticles as high-performance anode materials for lithium-ion batteries. Adv. Funct. Mater. 2020, 30, 2006188.

    CAS  Google Scholar 

  128. Lee, M. J.; Lee, K.; Lim, J.; Li, M. C.; Noda, S.; Kwon, S. J.; DeMattia, B.; Lee, B.; Lee, S. W. Outstanding low-temperature performance of structure-controlled graphene anode based on surface-controlled charge storage mechanism. Adv. Funct. Mater. 2021, 31, 2009397.

    CAS  Google Scholar 

  129. Zhang, F.; Zhu, W. Q.; Li, T. T.; Yuan, Y.; Yin, J.; Jiang, J. H.; Yang, L. S. Advances of synthesis methods for porous silicon-based anode materials. Front. Chem. 2022, 10, 889563.

    CAS  Google Scholar 

  130. Song, L. T.; Zhao, T. Q.; Tan, X. H.; Mao, D. D.; Su, S.; Fan, Z. W.; Chu, W. G. Biomass- derived hierarchically porous (nitrogen, phosphorus) Co-doped SiOj/C composite nanosheet architectures for superior lithium storage and ultra-long cycle performance. Batt. Supercaps 2022, 5, e202100350.

    CAS  Google Scholar 

  131. McBrayer, J. D.; Rodrigues, M. T. F.; Schulze, M. C.; Abraham, D. P.; Apblett, C. A.; Bloom, I.; Carroll, G. M.; Colclasure, A. M.; Fang, C.; Harrison, K. L. et al. Calendar aging of silicon-containing batteries. Nat. Energy 2021, 6, 866–872.

    CAS  Google Scholar 

  132. Guo, X. T.; Xu, H. Y.; Li, W. T.; Liu, Y. Y.; Shi, Y. X.; Li, Q.; Pang, H. Embedding atomically dispersed iron sites in nitrogen-doped carbon frameworks-wrapped silicon suboxide for superior lithium storage. Adv. Sci. 2023, 10, 2206084.

    CAS  Google Scholar 

  133. Tan, W.; Wang, L. N.; Lu, Z. G.; Yang, F.; Xu, Z. H. A hierarchical Si/C nanocomposite of stable conductive network formed through thermal phase separation of asphaltenes for high-performance Liion batteries. Small 2022, 18, 2203102.

    CAS  Google Scholar 

  134. Cai, Y. F.; Liu, C. X.; Yu, Z. A.; Ma, W. C.; Jin, Q.; Du, R. C.; Qian, B. Y.; Jin, X. X.; Wu, H. M.; Zhang, Q. H. et al. Slidable and highly ionic conductive polymer binder for high-performance Si anodes in lithium-ion batteries. Adv. Sci. 2023, 10, 2205590.

    CAS  Google Scholar 

  135. Xiao, Z. X.; Lin, X. Q.; Zhang, C. X.; Shen, J. Q.; Zhang, R. R.; He, Z. Y.; Lin, Z. K.; Jiang, H. R.; Wei, F. Insights into the coating integrity and its effect on the electrochemical performance of core-shell structure SiOx@C composite anodes. Small Methods 2023, 7, 2201623.

    CAS  Google Scholar 

  136. Tian, Y. F.; Li, G.; Xu, D. X.; Lu, Z. Y.; Yan, M. Y.; Wan, J.; Li, J. Y.; Xu, Q.; Xin, S.; Wen, R. et al. Micrometer-sized SiMgyOx with stable internal structure evolution for high-performance Li-ion battery anodes. Adv. Mater. 2022, 34, 2200672.

    CAS  Google Scholar 

  137. Oh, M. G.; Kwak, S.; An, K.; Tran, Y. H. T.; Kang, D. G.; Park, S. J.; Lim, G.; Kim, K.; Lee, Y. S.; Song, S. W. Perfluoro macrocyclic ether as an ambifunctional additive for high-performance SiO and nickel 88%-based high-energy Li-ion battery. Adv. Funct. Mater. 2023, 33, 2212890.

    CAS  Google Scholar 

  138. Pan, S. S.; Yang, L. P.; Su, P. P.; Zhang, H. T.; Zhang, S. J. Robust multiscale electron/ion transport and enhanced structural stability in SiOx semi-solid anolytes enabled by trifunctional artificial interfaces for high-performance Li-ion slurry flow batteries. Small 2022, 18, 2202139.

    CAS  Google Scholar 

  139. Im, J.; Kwon, J. D.; Kim, D. H.; Yoon, S.; Cho, K. Y. P-doped SiOj/Si/SiOj. sandwich anode for Li-ion batteries to achieve high initial coulombic efficiency and low capacity decay. Small Methods 2022, 6, 2101052.

    CAS  Google Scholar 

  140. Lee, H. A.; Shin, M.; Kim, J.; Choi, J. W.; Lee, H. Desggmng adaptive binders for microenvironment settings of silicon anode particles. Adv. Mater. 2021, 33, 2007460.

    CAS  Google Scholar 

  141. Cao, Z.; Zheng, X. Y.; Qu, Q. T.; Huang, Y. H.; Zheng, H. H. Electrolyte design enabling a high-safety and high-performance Si anode with a tailored electrode-electrolyte interphase. Adv. Mater. 2021, 33, 2103178.

    CAS  Google Scholar 

  142. Collins, G. A.; Kilian, S.; Geaney, H.; Ryan, K. M. A nanowire nest structure comprising copper silicide and silicon nanowires for lithium-ion battery anodes with high areal loading. Small 2021, 17, 2102333.

    CAS  Google Scholar 

  143. Chae, S.; Xu, Y. B.; Yi, R.; Lim, H. S.; Velickovic, D.; Li, X. L.; Li, Q. Y.; Wang, C. M.; Zhang, J. G. A micrometer-sized silicon/carbon composite anode synthesized by impregnation of petroleum pitch in nanoporous silicon. Adv. Mater. 2021, 33, 2103095.

    CAS  Google Scholar 

  144. Ren, Y.; Xiang, L. Z.; Yin, X. C.; Xiao, R.; Zuo, P. J.; Gao, Y. Z.; Yin, G. P.; Du, C. Y. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries. Adv. Funct. Mater. 2022, 32, 2110046.

    CAS  Google Scholar 

  145. Hernandha, R. F. H.; Rath, P. C.; Umesh, B.; Patra, J.; Huang, C. Y.; Wu, W. W.; Dong, Q. F.; Li, J.; Chang, J. K. Supercritical CO2-assisted SiOx/carbon multi-layer coating on Si anode for lithium-ion batteries. Adv. Funct. Mater. 2021, 31, 2104135.

    CAS  Google Scholar 

  146. Su, Y. X.; Feng, X.; Zheng, R. B.; Lv, Y. Y.; Wang, Z. Y.; Zhao, Y.; Shi, L. Y.; Yuan, S. Binary network of conductive elastic polymer constraining nanosilicon for a high-performance lithiumion battery. Acs Nano 2021, 15, 14570–14579.

    CAS  Google Scholar 

  147. Li, Z. H.; Wu, G.; Yang, Y. J.; Wan, Z. W.; Zeng, X. M.; Yan, L. J.; Wu, S. X.; Ling, M.; Liang, C. D.; Hui, K. N. et al. An ion-conductive grafted polymeric binder with practical loading for silicon anode with high interfacial stability in lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2201197.

    CAS  Google Scholar 

  148. Jiang, M. M.; Chen, J. L.; Zhang, Y. B.; Song, N.; Jiang, W.; Yang, J. P. Assembly: A key enabler for the construction of superior silicon-based anodes. Adv. Sci. 2022, 9, 2203162.

    CAS  Google Scholar 

  149. Moon, J.; Lee, H. C.; Jung, H.; Wakita, S.; Cho, S.; Yoon, J.; Lee, J.; Ueda, A.; Choi, B.; Lee, S. et al. Interplay between electrochemical reactions and mechanical responses in silicongraphite anodes and its impact on degradation. Nat. Commun. 2021, 12, 2710.

    Google Scholar 

Download references

Acknowledgements

This review is financially supported by the National Natural Science Foundation of China (No. 52172191) and Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB 36000000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, L., Chu, W. Electrodes for Li-ion batteries: From high-voltage LiCoO2 to Co-reduced/Co-free layered oxides with potential anodes. Nano Res. 16, 12983–13007 (2023). https://doi.org/10.1007/s12274-023-6239-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6239-4

Keywords

Navigation