Skip to main content

Advertisement

Log in

Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives

  • Review article
  • Published:
Electrochemical Energy Reviews Aims and scope Submit manuscript

Abstract

Lithium-rich layered oxides (LLOs), also known as Li1+xM1−xO2 or xLi2MnO3-(1–x)LiMO2 (M = Ni, Co, Mn), have been regarded as some of the highest capacity lithium cathodes and have attracted increasing attention from battery researchers and engineers in recent years. This is because LLOs possess maximum possible capacities of ~ 280 to 310 mAh g−1 with a high working potential of ~ 3.7 V (vs. Li+/Li0) and an astounding energy density of ~ 900 Wh kg−1. Despite these promising properties, these technologically important cathodes have not yet been successfully commercialized due to low initial Coulombic efficiency, poor rate capabilities and gradual capacity/voltage fade during electrochemical cycling as well as further complications from continuous structural changes during cycling. Here, researchers have concluded that these issues mainly originate from the electrochemical activation of Li2MnO3 components, which, although it provides anomalously high capacity performances, also causes associated complex anionic redox activities of O and irreversible structural and phase transformations during charging at potentials greater than 4.5 V (vs. Li+/Li0). To provide perspectives, this review will summarize various attempts made towards addressing these issues and present the connections between electrochemical properties and structural change. In addition, this review will discuss redox chemistries and mechanistic behaviours during cycling and will provide future research directions to guide the commercialization of LLOs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Reproduced with permission from Ref. [12]

Fig. 2

Source: Reproduced with permission from Ref. [37]

Fig. 3: a

Source: a Reproduced with permission from Ref. [89]. b, c Reproduced with permission from Ref. [14]. d Reproduced with permission from Ref. [96]

Fig. 4: a

Source: a, b Reproduced with permission from Ref. [28]

Fig. 5

Source: Reproduced with permission from Ref. [110]

Fig. 6

Source: a, b Reproduced with permission from Ref. [98]. c Reproduced with permission from Ref. [59]

Fig. 7

Source: ac Reproduced with permission from Ref. [116]. d, e Reproduced with permission from Ref. [117]

Fig. 8

Source: ac Reproduced with permission from Ref. [23]

Fig. 9: a

Source: a, b Reproduced with permission from Ref. [177]. ce Reproduced with permission from Ref. [187]

Fig. 10

Source: ac Reproduced with permission from Ref. [25]

Fig. 11

Source: Reproduced with permission from Ref. [48]

Fig. 12: a

Sources: a Reproduced with permission from Ref. [97], b Reproduced with permission from Ref. [74]. c Reproduced with permission from Ref. [26]

Fig. 13: a

Source: ad Reproduced with permission from Ref. [205]

Fig. 14: a

Source: a-c Reproduced with permission from Ref. [206]

Fig. 15

Source: ad Reproduced with permission from Ref. [207]

Fig. 16

Source: ad Reproduced with permission from Ref. [50]

Fig. 17

Source: Reproduced with permission from Ref. [117]

Fig. 18

Source: ad Reproduced with permission from Ref. [228]

Fig. 19: a

Source: ac Reproduced with permission from Ref. [15]

Similar content being viewed by others

References

  1. Bunsen, T., Cazzola, P., Gorner, M., et al.: Global EV Outlook 2018: towards cross-modal electrification. International Energy Agency, Paris (2018)

    Google Scholar 

  2. Li, M., Lu, J., Chen, Z., et al.: 30 Years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018)

    Article  CAS  Google Scholar 

  3. Howell, D., Duong, T.Q., Faguy, P.W., et al.: FY 2016 annual progress report for advanced batteries. In: Energy Efficiency & Renewable Energy, U.S. Department of Energy, Washington, DC (2017)

  4. Liu, W., Oh, P., Liu, X., et al.: Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Edit. 54, 4440–4457 (2015)

    Article  CAS  Google Scholar 

  5. Julien, C., Mauger, A.: Review of 5-V electrodes for Li-ion batteries: Status and trends. Ionics 19, 951–988 (2013)

    Article  CAS  Google Scholar 

  6. Hu, M., Pang, X., Zhou, Z.: Recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229–242 (2013)

    Article  CAS  Google Scholar 

  7. Xu, B., Qian, D., Wang, Z., et al.: Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng. R-Rep. 73, 51–65 (2012)

    Article  CAS  Google Scholar 

  8. Ellis, B.L., Lee, K.T., Nazar, L.F.: Positive electrode materials for Li-ion and Li-batteries. Chem. Mater. 22, 691–714 (2010)

    Article  CAS  Google Scholar 

  9. Choi, J.W., Aurbach, D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016)

    Article  CAS  Google Scholar 

  10. Croguennec, L., Palacin, M.R.: Recent achievements on inorganic electrode materials for lithium-ion batteries. J. Am. Chem. Soc. 137, 3140–3156 (2015)

    Article  CAS  PubMed  Google Scholar 

  11. Kraytsberg, A., Ein-Eli, Y.: Higher, stronger, better… A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2, 922–939 (2012)

    Article  CAS  Google Scholar 

  12. Li, W., Song, B., Manthiram, A.: High-voltage positive electrode materials for lithium-ion batteries. Chem. Soc. Rev. 46, 3006–3059 (2017)

    Article  CAS  PubMed  Google Scholar 

  13. Rossouw, M.H., Liles, D.C., Thackeray, M.M.: Synthesis and structural characterization of a novel layered lithium manganese oxide, Li0.36Mn0.91O2, and its lithiated derivative, Li1.09Mn0.91O2. J. Solid State Chem. 104, 464-466 (1993)

  14. Thackeray, M.M., Kang, S.H., Johnson, C.S., et al.: Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007)

    Article  CAS  Google Scholar 

  15. Qiu, B., Zhang, M., Wu, L., et al.: Gas–solid interfacial modification of oxygen activity in layered oxide cathodes for lithium-ion batteries. Nat. Commun. 7, 12108 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lu, Z., Dahn, J.R.: Understanding the anomalous capacity of Li/Li [NixLi(1/3−2x/3)Mn(2/3− x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815–A822 (2002)

    Article  CAS  Google Scholar 

  17. Croy, J., Kang, S.H., Balasubramanian, M., et al.: Li2MnO3-based composite cathodes for lithium batteries: a novel synthesis approach and new structures. Electrochem. Commun. 13, 1063–1066 (2011)

    Article  CAS  Google Scholar 

  18. Yu, X., Lyu, Y., Gu, L., et al.: Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4, 1300950 (2014)

    Article  CAS  Google Scholar 

  19. Kalluri, S., Yoon, M., Jo, M., et al.: Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries. Adv. Mater. 29, 1605807 (2017)

    Article  CAS  Google Scholar 

  20. Wang, Y., Yang, Z., Qian, Y., et al.: New insights into improving rate performance of lithium-rich cathode material. Adv. Mater. 27, 3915–3920 (2015)

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, X.D., Shi, J.L., Liang, J.Y., et al.: Structurally modulated Li-rich cathode materials through cooperative cation doping and anion hybridization. Sci. China Chem. 60, 1554–1560 (2017)

    Article  CAS  Google Scholar 

  22. Assat, G., Tarascon, J.M.: Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373 (2018)

    Article  CAS  Google Scholar 

  23. Gent, W.E., Lim, K., Liang, Y., et al.: Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8, 2091 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Assat, G., Foix, D., Delacourt, C., et al.: Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu, E., Yu, X., Lin, R., et al.: Evolution of redox couples in Li-and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. Nature Energy 3, 690 (2018)

    Article  CAS  Google Scholar 

  26. Singer, A., Zhang, M., Hy, S., et al.: Nucleation of dislocations and their dynamics in layered oxide cathode materials during battery charging. Nat. Energy 3, 641–647 (2018)

    Article  CAS  Google Scholar 

  27. Myeong, S., Cho, W., Jin, W., et al.: Understanding voltage decay in lithium-excess layered cathode materials through oxygen-centred structural arrangement. Nat. Commun. 9, 3285 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu, J., Sun, M., Qiao, R., et al.: Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rozier, P., Tarascon, J.M.: Li-rich layered oxide cathodes for next-generation Li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, A2490–A2499 (2015)

    Article  CAS  Google Scholar 

  30. Thackeray, M., Croy, J., Lee, E., et al.: The quest for manganese-rich electrodes for lithium batteries: strategic design and electrochemical behavior. Sustain. Energy Fuels 2, 1375–1397 (2018)

    Article  CAS  Google Scholar 

  31. Nayak, P.K., Erickson, E.M., Schipper, F., et al.: Review on challenges and recent advances in the electrochemical performance of high capacity Li-and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater. 8, 1702397 (2018)

    Article  CAS  Google Scholar 

  32. Hu, E., Wang, X., Yu, X., et al.: Probing the complexities of structural changes in layered oxide cathode materials for Li-ion batteries during fast charge-discharge cycling and heating. Acc. Chem. Res. 51, 290–298 (2018)

    Article  CAS  PubMed  Google Scholar 

  33. Thackeray, M.M., Johnson, C.S., Vaughey, J.T., et al.: Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257–2267 (2005)

    Article  CAS  Google Scholar 

  34. Lu, Z., Beaulieu, L., Donaberger, R., et al.: Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 149, A778–A791 (2002)

    Article  CAS  Google Scholar 

  35. Lu, Z., Chen, Z., Dahn, J.R.: Lack of cation clustering in Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0 < x \(\leqslant\) 1/2) and Li[CrxLi(1−x)/3Mn(2−2x)/3]O2 (0 < x < 1). Chem. Mater. 15, 3214–3220 (2003)

    Article  CAS  Google Scholar 

  36. Li, X., Qiao, Y., Guo, S., et al.: Direct visualization of the reversible O2−/O redox process in Li-rich cathode materials. Adv. Mater. 30, 1705197 (2018)

    Article  CAS  Google Scholar 

  37. Hong, J., Gwon, H., Jung, S.K., et al.: Review—lithium-excess layered cathodes for lithium rechargeable batteries. J. Electrochem. Soc. 162, A2447–A2467 (2015)

    Article  CAS  Google Scholar 

  38. Yu, H., Ishikawa, R., So, Y.G., et al.: Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem. Int. Edit. 125, 6085–6089 (2013)

    Article  Google Scholar 

  39. Radin, M.D., Hy, S., Sina, M., et al.: Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. Adv. Energy Mater. 7, 1602888 (2017)

    Article  CAS  Google Scholar 

  40. Mohanty, D., Huq, A., Payzant, E.A., et al.: Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: insight into the crystal structure. Chem. Mater. 25, 4064–4070 (2013)

    Article  CAS  Google Scholar 

  41. Wang, D., Belharouak, I., Zhang, X., et al.: Insights into the phase formation mechanism of [0.5Li2MnO3·0.5LiNi0.5Mn0.5O2] battery materials. J. Electrochem. Soc. 161, A1–A5 (2014)

    Article  CAS  Google Scholar 

  42. Boulineau, A., Simonin, L., Colin, J.F., et al.: Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Chem. Mater. 24, 3558–3566 (2012)

    Article  CAS  Google Scholar 

  43. Cho, S.W., Kim, G.O., Ryu, K.S.: Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries. Solid State Ion. 206, 84–90 (2012)

    Article  CAS  Google Scholar 

  44. Gummow, R.J., Sharma, N., Feng, R., et al.: High performance composite lithium-rich nickel manganese oxide cathodes for lithium-ion batteries. J. Electrochem. Soc. 160, A1856–A1862 (2013)

    Article  CAS  Google Scholar 

  45. Devaraj, A., Gu, M., Colby, R., et al.: Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat. Commun. 6, 8014 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bareño, J., Balasubramanian, M., Kang, S.H., et al.: Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2. Chem. Mater. 23, 2039–2050 (2011)

    Article  CAS  Google Scholar 

  47. McCalla, E., Lowartz, C.M., Brown, C.R., et al.: Formation of layered-layered composites in the Li–Co–Mn oxide pseudoternary system during slow cooling. Chem. Mater. 25, 912–918 (2013)

    Article  CAS  Google Scholar 

  48. Zheng, J., Gu, M., Xiao, J., et al.: Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 3824–3830 (2013)

    Article  CAS  PubMed  Google Scholar 

  49. Zheng, J., Gu, M., Xiao, J., et al.: Functioning mechanism of AlF3 coating on the Li-and Mn-rich cathode materials. Chem. Mater. 26, 6320–6327 (2014)

    Article  CAS  Google Scholar 

  50. Nayak, P.K., Grinblat, J., Levi, M., et al.: Al doping for mitigating the capacity fading and voltage decay of layered Li and Mn-rich cathodes for Li-ion batteries. Adv. Energy Mater. 6, 1502398 (2016)

    Article  CAS  Google Scholar 

  51. Pang, W.K., Lin, H.F., Peterson, V.K., et al.: Effects of fluorine and chromium doping on the performance of lithium-rich Li1+xMO2 (M = Ni, Mn, Co) positive electrodes. Chem. Mater. 29, 10299–10311 (2017)

    Article  CAS  Google Scholar 

  52. Gu, M., Genc, A., Belharouak, I., et al.: Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries. Chem. Mater. 25, 2319–2326 (2013)

    Article  CAS  Google Scholar 

  53. Lei, C.H., Bareño, J., Wen, J.G., et al.: Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy. J. Power Sour. 178, 422–433 (2008)

    Article  CAS  Google Scholar 

  54. Armstrong, A.R., Holzapfel, M., Novák, P., et al.: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694–8698 (2006)

    Article  CAS  PubMed  Google Scholar 

  55. Zheng, J., Shi, W., Gu, M., et al.: Electrochemical kinetics and performance of layered composite cathode material Li[Li0.2Ni0.2Mn0.6]O2. J. Electrochem. Soc. 160, A2212–A2219 (2013)

    Article  CAS  Google Scholar 

  56. Kikkawa, J., Akita, T., Tabuchi, M., et al.: Coexistence of layered and cubic rocksalt structures with a common oxygen sublattice in Li1.2Mn0.4Fe0.4O2 particles: a transmission electron microscopy study. J. Appl. Phys. 103, 104911 (2008)

    Article  CAS  Google Scholar 

  57. Jacob, C., Jian, J., Zhu, Y., et al.: A new approach to investigate Li2MnO3 and Li(Ni0.5Mn0.3Co0.2)O2 mixed phase cathode materials. J. Mater. Chem. A 2, 2283–2289 (2014)

    Article  Google Scholar 

  58. Shi, J.L., Zhang, J.N., He, M., et al.: Mitigating voltage decay of Li-rich cathode material via increasing Ni content for lithium-Ion batteries. ACS Appl. Mater. Interfaces 8, 20138–20146 (2016)

    Article  CAS  PubMed  Google Scholar 

  59. Sun, Y.K., Lee, M.J., Yoon, C.S., et al.: The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv. Mater. 24, 1192–1196 (2012)

    Article  CAS  PubMed  Google Scholar 

  60. Zhang, S., Gu, H., Tang, T., et al.: Insight into the synergistic effect mechanism between the Li2MO3 phase and the LiMO2 phase (M = Ni Co, and Mn) in Li- and Mn-rich layered oxide cathode materials. Electrochim. Acta 266, 66–77 (2018)

    Article  CAS  Google Scholar 

  61. Ito, A., Li, D., Sato, Y., et al.: Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J. Power Sources 195, 567–573 (2010)

    Article  CAS  Google Scholar 

  62. Shojan, J., Chitturi, V.R., Soler, J., et al.: High energy xLi2MnO3–(1-x)LiNi2/3Co1/6Mn1/6O2 composite cathode for advanced Li-ion batteries. J. Power Sources 274, 440–450 (2015)

    Article  CAS  Google Scholar 

  63. Yu, R., Zhang, Z., Jamil, S., et al.: Effects of nanofiber architecture and antimony doping on the performance of lithium-rich layered oxides: enhancing lithium diffusivity and lattice oxygen stability. ACS Appl. Mater. Interfaces 10, 16561–16571 (2018)

    Article  CAS  PubMed  Google Scholar 

  64. Ding, F., Li, J., Deng, F., et al.: Surface heterostructure induced by PrPO4 modification in Li12[Mn0.54Ni0.13Co0.13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. ACS Appl. Mater. Interfaces 9, 27936–27945 (2017)

    Article  CAS  PubMed  Google Scholar 

  65. Ghanty, C., Basu, R.N., Majumder, S.B.: Performance of wet chemical synthesized xLi2MnO3-(1-x)Li(Mn0.375Ni0.375Co0.25)O2 (0.0 \(\leqslant\) x \(\leqslant\) 1.0) integrated cathode for lithium rechargeable battery. J. Electrochem. Soc. 159, A1125–A1134 (2012)

    Article  CAS  Google Scholar 

  66. Nomura, F., Liu, Y., Tanabe, T., et al.: Elucidation of key factors of water-resistance of Li-rich solid-solution layered oxide cathode materials applicable to a water-based cathode preparation process for Li-ion battery. Electrochim. Acta 283, 478–487 (2018)

    Article  CAS  Google Scholar 

  67. Bréger, J., Jiang, M., Dupré, N., et al.: High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2575–2585 (2005)

    Article  CAS  Google Scholar 

  68. Jarvis, K.A., Deng, Z., Allard, L.F., et al.: Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: evidence of a solid solution. Chem. Mater. 23, 3614–3621 (2011)

    Article  CAS  Google Scholar 

  69. Shukla, A.K., Ramasse, Q.M., Ophus, C., et al.: Unravelling structural ambiguities in lithium-and manganese-rich transition metal oxides. Nat. Commun. 6, 8711 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zheng, J., Gu, M., Genc, A., et al.: Mitigating voltage fade in cathode materials by improving the atomic level uniformity of elemental distribution. Nano Lett. 14, 2628–2635 (2014)

    Article  CAS  PubMed  Google Scholar 

  71. Komatsu, H., Minato, T., Matsunaga, T., et al.: Site-selective analysis of nickel-substituted Li-rich layered material: migration and role of transition metal at charging and discharging. J. Phys. Chem. C 122, 20099–20107 (2018)

    Article  CAS  Google Scholar 

  72. Zheng, J., Xu, P., Gu, M., et al.: Structural and chemical evolution of Li-and Mn-rich layered cathode material. Chem. Mater. 27, 1381–1390 (2015)

    Article  CAS  Google Scholar 

  73. Ozawa, K., Nakao, Y., Mochiku, T., et al.: Electrochemical characteristics of layered Li1.95Mn0.9Co0.15O3 (C2/m) as a lithium-battery cathode. J. Electrochem. Soc. 159, A300–A304 (2012)

    Article  CAS  Google Scholar 

  74. Liu, H., Harris, K.J., Jiang, M., et al.: Unraveling the rapid performance decay of layered high-energy cathodes: from nanoscale degradation to drastic bulk evolution. ACS Nano 12, 2708–2718 (2018)

    Article  CAS  PubMed  Google Scholar 

  75. Wang, J.X.: Structure and delithiation/lithiation of the lithium-rich layered oxide Li[Li0.23Ni0.15Mn0.62]O2 as cathode material. Int. J. Electrochem. Sci. 12, 8095–8105 (2017)

    Article  CAS  Google Scholar 

  76. Pimenta, V., Sathiya, M., Batuk, D., et al.: Synthesis of Li-rich NMC: a comprehensive study. Chem. Mater. 29, 9923–9936 (2017)

    Article  CAS  Google Scholar 

  77. Fujii, H., Ozawa, K., Mochiku, T.: Electron diffraction and high-resolution electron microscopy studies on layered Li2−δ(Mn1−xCox)1+δO3. J. Solid State Chem. 203, 345–352 (2013)

    Article  CAS  Google Scholar 

  78. Nomura, F., Tanabe, T., Gunji, T., et al.: Effect of the cooling process on the structure and charge/discharge cycling performance in Li[Li0.20Mn0.58Ni0.18Co0.04]O2 Li-rich solid-solution layered oxide cathode materials for Li-ion battery. ECS Trans. 85, 1497–1505 (2018)

    Article  CAS  Google Scholar 

  79. Koga, H., Croguennec, L., Mannessiez, P., et al.: Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: insights into their structure. J. Phys. Chem. C 116, 13497–13506 (2012)

    Article  CAS  Google Scholar 

  80. Numata, K., Sakaki, C., Yamanaka, S.: Synthesis and characterization of layer structured solid solutions in the system of LiCoO2-Li2MnO3. Solid State Ion. 117, 257–263 (1999)

    Article  CAS  Google Scholar 

  81. Yoon, W.-S., Iannopollo, S., Grey, C.P., et al.: Local structure and cation ordering in O3 lithium nickel manganese oxides with stoichiometry Li[NixMn(2−x)/3Li(1−2x)/3]O2 NMR studies and first principles calculations. Electrochem. Solid-State Lett. 7, A167–A171 (2004)

    Article  CAS  Google Scholar 

  82. Meng, Y.S., Ceder, G., Grey, C.P., et al.: Cation ordering in layered O3 Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0 \(\leqslant\) x \(\leqslant\) 1/2) compounds. Chem. Mater. 17, 2386–2394 (2005)

    Article  CAS  Google Scholar 

  83. Genevois, C., Koga, H., Croguennec, L., et al.: Insight into the atomic structure of cycled lithium-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 using HAADF STEM and electron nanodiffraction. J. Phys. Chem. C 119, 75–83 (2014)

    Article  CAS  Google Scholar 

  84. Sun, Y., Shiosaki, Y., Xia, Y., et al.: The preparation and electrochemical performance of solid solutions LiCoO2–Li2MnO3 as cathode materials for lithium ion batteries. J. Power Sources 159, 1353–1359 (2006)

    Article  CAS  Google Scholar 

  85. West, W.C., Soler, J., Smart, M.C., et al.: Electrochemical behavior of layered solid solution Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-ion cathodes with and without alumina coatings. J. Electrochem. Soc. 158, A883–A889 (2011)

    Article  CAS  Google Scholar 

  86. Ohzuku, T., Nagayama, M., Tsuji, K., et al.: High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mAh g−1. J. Mater. Chem. 21, 10179–10188 (2011)

    Article  CAS  Google Scholar 

  87. Singh, G., Thomas, R., Kumar, A., et al.: Electrochemical behavior of Cr-doped composite Li2MnO3-LiMn0.5Ni0.5O2 cathode materials. J. Electrochem. Soc. 159, A410–A420 (2012)

    Article  CAS  Google Scholar 

  88. Nomura, F., Liu, Y., Tanabe, T., et al.: Optimization of calcination temperature in preparation of a high capacity Li-rich solid-solution Li[Li0.2Ni0.18Co0.03Mn0.58]O2 material and its cathode performance in lithium ion battery. Electrochim. Acta 269, 321–330 (2018)

    Article  CAS  Google Scholar 

  89. Thackeray, M., Kang, S.H., Johnson, C., et al.: Comments on the structural complexity of lithium-rich Li1+ xM1−xO2 electrodes (M = Mn, Ni, Co) for lithium batteries. Electrochem. Commun. 8, 1531–1538 (2006)

    Article  CAS  Google Scholar 

  90. Pan, H., Zhang, S., Chen, J., et al.: Li- and Mn-rich layered oxide cathode materials for lithium-ion batteries: a review from fundamentals to research progress and applications. Mol. Syst. Des. Eng. 3, 748–803 (2018)

    Article  CAS  Google Scholar 

  91. Hy, S., Felix, F., Rick, J., et al.: Direct In situ observation of Li2O evolution on Li-Rich high-capacity cathode material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 \(\leqslant\) x \(\leqslant\) 0.5). J. Am. Chem. Soc. 136, 999–1007 (2014)

    Article  CAS  Google Scholar 

  92. Arunkumar, T.A., Alvarez, E., Manthiram, A.: Structural, chemical, and electrochemical characterization of layered Li[Li0.17Mn0.33Co0.5-yNiy]O2 cathodes. J. Electrochem. Soc. 154, A770–A775 (2007)

    Article  CAS  Google Scholar 

  93. Koga, H., Croguennec, L., Ménétrier, M., et al.: Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C 118, 5700–5709 (2014)

    Article  CAS  Google Scholar 

  94. Koga, H., Croguennec, L., Ménétrier, M., et al.: Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 160, A786–A792 (2013)

    Article  CAS  Google Scholar 

  95. Seo, D.H., Lee, J., Urban, A., et al.: The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692 (2016)

    Article  CAS  PubMed  Google Scholar 

  96. Muhammad, S., Kim, H., Kim, Y., et al.: Evidence of reversible oxygen participation in anomalously high capacity Li-and Mn-rich cathodes for Li-ion batteries. Nano Energy 21, 172–184 (2016)

    Article  CAS  Google Scholar 

  97. Chen, C.J., Pang, W.K., Mori, T., et al.: The origin of capacity fade in the Li2MnO3·LiMO2 (M = Li, Ni Co, Mn) microsphere positive electrode: an operando neutron diffraction and transmission X-ray microscopy study. J. Am. Chem. Soc. 138, 8824–8833 (2016)

    Article  CAS  PubMed  Google Scholar 

  98. Wu, Y., Manthiram, A.: Effect of surface modifications on the layered solid solution cathodes (1−z)Li[Li1/3Mn2/3]O2−(z)Li[Mn05−yNi0.5−yCo2y]O2. Solid State Ion. 180, 50–56 (2009)

    Article  CAS  Google Scholar 

  99. West, W.C., Staniewicz, R.J., Ma, C., et al.: Implications of the first cycle irreversible capacity on cell balancing for Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-ion cathodes. J. Power Sources 196, 9696–9701 (2011)

    Article  CAS  Google Scholar 

  100. van Bommel, A., Krause, L.J., Dahn, J.R.: Investigation of the irreversible capacity loss in the lithium-rich oxide Li[Li1/5Ni1/5Mn3/5]O2. J. Electrochem. Soc. 158, A731–A735 (2011)

    Article  CAS  Google Scholar 

  101. Shunmugasundaram, R., Senthil Arumugam, R., Harris, K.J., et al.: A search for low-irreversible capacity and high-reversible capacity positive electrode materials in the Li–Ni–Mn–Co pseudoquaternary system. Chem. Mater. 28, 55–66 (2015)

    Article  CAS  Google Scholar 

  102. Kang, S.H., Johnson, C., Vaughey, J., et al.: The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J. Electrochem. Soc. 153, A1186–A1192 (2006)

    Article  CAS  Google Scholar 

  103. Gao, J., Kim, J., Manthiram, A.: High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries. Electrochem. Commun. 11, 84–86 (2009)

    Article  CAS  Google Scholar 

  104. Zhou, L., Yin, Z., Ding, Z., et al.: Bulk and surface reconstructed Li-rich Mn-based cathode material for lithium ion batteries with eliminating irreversible capacity loss. J. Electroanal. Chem. 829, 7–15 (2018)

    Article  CAS  Google Scholar 

  105. Shunmugasundaram, R., Senthil Arumugam, R., Dahn, J.R.: High capacity Li-rich positive electrode materials with reduced first-cycle irreversible capacity loss. Chem. Mater. 27, 757–767 (2015)

    Article  CAS  Google Scholar 

  106. Lu, J., Chen, Z., Ma, Z., et al.: The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031 (2016)

    Article  CAS  PubMed  Google Scholar 

  107. Malik, R., Burch, D., Bazant, M., et al.: Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010)

    Article  CAS  PubMed  Google Scholar 

  108. Liu, J., Chen, H., Xie, J., et al.: Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes. J. Power Sources 251, 208–214 (2014)

    Article  CAS  Google Scholar 

  109. Wang, J., Yuan, G., Zhang, M., et al.: The structure, morphology, and electrochemical properties of Li1+xNi1/6Co1/6Mn4/6O2. 25+x/2 (0.1 \(\leqslant\) x \(\leqslant\) 0.7) cathode materials. Electrochim. Acta 66, 61–66 (2012)

    Article  CAS  Google Scholar 

  110. Li, J., Shunmugasundaram, R., Doig, R., et al.: In situ x-ray diffraction study of layered Li–Ni–Mn–Co oxides: effect of particle size and structural stability of core–shell materials. Chem. Mater. 28, 162–171 (2015)

    Article  CAS  Google Scholar 

  111. Yabuuchi, N., Kubota, K., Aoki, Y., et al.: Understanding particle-size-dependent electrochemical properties of Li2MnO3-based positive electrode materials for rechargeable lithium batteries. J. Phys. Chem. C 120, 875–885 (2016)

    Article  CAS  Google Scholar 

  112. Kuppan, S., Duncan, H., Chen, G.: Controlling side reactions and self-discharge in high-voltage spinel cathodes: the critical role of surface crystallographic facets. Phys. Chem. Chem. Phys. 17, 26471–26481 (2015)

    Article  CAS  PubMed  Google Scholar 

  113. Xu, J., Deshpande, R.D., Pan, J., et al.: Electrode side reactions, capacity loss and mechanical degradation in lithium-ion batteries. J. Electrochem. Soc. 162, A2026–A2035 (2015)

    Article  CAS  Google Scholar 

  114. Zhao, T., Li, L., Chen, R., et al.: Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 15, 164–176 (2015)

    Article  CAS  Google Scholar 

  115. Song, J.H., Kapylou, A., Choi, H.S., et al.: Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping. J. Power Sources 313, 65–72 (2016)

    Article  CAS  Google Scholar 

  116. Qing, R.P., Shi, J.L., Xiao, D.D., et al.: Enhancing the kinetics of Li-rich cathode materials through the pinning effects of gradient surface Na+ doping. Adv. Energy Mater. 6, 1501914 (2016)

    Article  CAS  Google Scholar 

  117. Zhao, Y., Liu, J., Wang, S., et al.: Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv. Funct. Mater. 26, 4760–4767 (2016)

    Article  CAS  Google Scholar 

  118. Liu, S., Liu, Z., Shen, X., et al.: Surface doping to enhance structural integrity and performance of Li-rich layered oxide. Adv. Energy Mater. 8, 1802105 (2018)

    Article  CAS  Google Scholar 

  119. Zhang, X., Belharouak, I., Li, L., et al.: Structural and electrochemical study of Al2O3 and TiO2 coated Li1.2Ni0.13Mn0.54Co0.13O2 cathode material using ALD. Adv. Energy Mater. 3, 1299–1307 (2013)

    Article  CAS  Google Scholar 

  120. Zhang, X., Yin, Y., Hu, Y., et al.: Zr-containing phosphate coating to enhance the electrochemical performances of Li-rich layer-structured Li [Li0.2Ni0.17Co0.07Mn0.56]O2. Electrochim. Acta 193, 96–103 (2016)

    Article  CAS  Google Scholar 

  121. Seteni, B., Rapulenyane, N., Ngila, J.C., et al.: Coating effect of LiFePO4 and Al2O3 on Li1.2Mn0.54Ni0.13Co0.13O2 cathode surface for lithium ion batteries. J. Power Sources 353, 210–220 (2017)

    Article  CAS  Google Scholar 

  122. Kim, I.T., Knight, J.C., Celio, H., et al.: Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating. J. Mater. Chem. A 2, 8696–8704 (2014)

    Article  CAS  Google Scholar 

  123. Wang, Z., Liu, E., He, C., et al.: Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries. J. Power Sour. 236, 25–32 (2013)

    Article  CAS  Google Scholar 

  124. Liu, B., Zhang, Q., He, S., et al.: Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4. Electrochim. Acta 56, 6748–6751 (2011)

    Article  CAS  Google Scholar 

  125. Liu, X., Liu, J., Huang, T., et al.: CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries. Electrochim. Acta 109, 52–58 (2013)

    Article  CAS  Google Scholar 

  126. Xiao, B., Wang, B., Liu, J., et al.: Highly stable Li1.2Mn0.54Co0.13Ni0.13O2 enabled by novel atomic layer deposited AlPO4 coating. Nano Energy 34, 120–130 (2017)

    Article  CAS  Google Scholar 

  127. Wu, F., Li, N., Su, Y., et al.: Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials? J. Mater. Chem. 22, 1489–1497 (2012)

    Article  CAS  Google Scholar 

  128. Gan, Y., Wang, Y., Han, J., et al.: Synthesis and electrochemical performance of nano TiO2(B)-coated Li [Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for lithium-ion batteries. New J. Chem. 41, 12962–12968 (2017)

    Article  CAS  Google Scholar 

  129. Shi, S., Tu, J., Zhang, Y., et al.: Effect of Sm2O3 modification on Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material for lithium ion batteries. Electrochim. Acta 108, 441–448 (2013)

    Article  CAS  Google Scholar 

  130. Wang, Z., Liu, E., Guo, L., et al.: Cycle performance improvement of Li-rich layered cathode material Li [Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating. Surf Coat Technol 235, 570–576 (2013)

    Article  CAS  Google Scholar 

  131. Li, C.D., Xu, J., Xia, J.S., et al.: Influences of FeF3 coating layer on the electrochemical properties of Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries. Solid State Ion. 292, 75–82 (2016)

    Article  CAS  Google Scholar 

  132. Zhou, L., Tian, M., Deng, Y., et al.: La2O3-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with enhanced specific capacity and cycling stability for lithium-ion batteries. Ceram. Int. 42, 15623–15633 (2016)

    Article  CAS  Google Scholar 

  133. Lu, C., Wu, H., Zhang, Y., et al.: Cerium fluoride coated layered oxide Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials with improved electrochemical performance for lithium ion batteries. J. Power Sources 267, 682–691 (2014)

    Article  CAS  Google Scholar 

  134. Li, J., Li, J., Yu, T., et al.: Stabilizing the structure and suppressing the voltage decay of Li[Li0.2Mn0.54Co0.13Ni0.13]O2 cathode materials for Li-ion batteries via multifunctional Pr oxide surface modification. Ceram. Int. 42, 18620–18630 (2016)

    Article  CAS  Google Scholar 

  135. Sun, S., Wan, N., Wu, Q., et al.: Surface-modified Li[Li0.2Ni0.17Co0.07Mn0.56]O2 nanoparticles with MgF2 as cathode for Li-ion battery. Solid State Ion. 278, 85–90 (2015)

    Article  CAS  Google Scholar 

  136. Bian, X., Fu, Q., Pang, Q., et al.: Multi-functional surface engineering for Li-excess layered cathode material targeting excellent electrochemical and thermal safety properties. ACS Appl. Mater. Interfaces 8, 3308–3318 (2016)

    Article  CAS  PubMed  Google Scholar 

  137. Mun, J., Park, J.H., Choi, W., et al.: New dry carbon nanotube coating of over-lithiated layered oxide cathode for lithium ion batteries. J. Mater. Chem. A 2, 19670–19677 (2014)

    Article  CAS  Google Scholar 

  138. Song, B., Zhou, C., Chen, Y., et al.: Role of carbon coating in improving electrochemical performance of Li-rich Li(Li0.2Mn0.54Ni0.13Co0.13)O2 cathode. RSC Adv. 4, 44244–44252 (2014)

    Article  CAS  Google Scholar 

  139. Xia, Q., Zhao, X., Xu, M., et al.: A Li-rich layered@ spinel@ carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. J. Mater. Chem. A 3, 3995–4003 (2015)

    Article  CAS  Google Scholar 

  140. Qiu, B., Wang, J., Xia, Y., et al.: Enhanced electrochemical performance with surface coating by reactive magnetron sputtering on lithium-rich layered oxide electrodes. ACS Appl. Mater. Interfaces 6, 9185–9193 (2014)

    Article  CAS  PubMed  Google Scholar 

  141. Lee, J., Choi, W.: Surface modification of over-lithiated layered oxides with PEDOT: PSS conducting polymer in lithium-ion batteries. J. Electrochem. Soc. 162, A743–A748 (2015)

    Article  CAS  Google Scholar 

  142. Wu, F., Liu, J., Li, L., et al.: Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer. ACS Appl. Mater. Interfaces 8, 23095–23104 (2016)

    Article  CAS  PubMed  Google Scholar 

  143. Jiang, K.C., Wu, X.L., Yin, Y.X., et al.: Superior hybrid cathode material containing lithium-excess layered material and graphene for lithium-ion batteries. ACS Appl. Mater. Interfaces 4, 4858–4863 (2012)

    Article  CAS  PubMed  Google Scholar 

  144. Xue, Q., Li, J., Xu, G., et al.: In situ polyaniline modified cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 with high rate capacity for lithium ion batteries. J. Mater. Chem. A 2, 18613–18623 (2014)

    Article  CAS  Google Scholar 

  145. Song, B., Lai, M.O., Liu, Z., et al.: Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries. J. Mater. Chem. A 1, 9954–9965 (2013)

    Article  CAS  Google Scholar 

  146. Bian, X., Fu, Q., Bie, X., et al.: Improved electrochemical performance and thermal stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 cathode material by Li3PO4 surface coating. Electrochim. Acta 174, 875–884 (2015)

    Article  CAS  Google Scholar 

  147. Liu, H., Chen, C., Du, C., et al.: Lithium-rich Li1.2Ni0.13Co0.13Mn0.54O2 oxide coated by Li3PO4 and carbon nanocomposite layers as high performance cathode materials for lithium ion batteries. J. Mater. Chem. A 3, 2634–2641 (2015)

    Article  CAS  Google Scholar 

  148. Xu, G., Li, J., Xue, Q., et al.: Elevated electrochemical performance of (NH4)3AlF6-coated 0.5Li2MnO3·0.5LiNi1/3Co1/3Mn1/3O2 cathode material via a novel wet coating method. Electrochim. Acta 117, 41–47 (2014)

    Article  CAS  Google Scholar 

  149. Kang, S.H., Thackeray, M.M.: Enhancing the rate capability of high capacity xLi2MnO3·(1–x) LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment. Electrochem. Commun. 11, 748–751 (2009)

    Article  CAS  Google Scholar 

  150. Wu, F., Zhang, X., Zhao, T., et al.: Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 7(6), 3773–3781 (2015)

    Article  CAS  PubMed  Google Scholar 

  151. Sun, Y.Y., Li, F., Qiao, Q.Q., et al.: Surface modification of Li(Li0.17Ni0.2Co0.05Mn0.58)O2 with LiAlSiO4 fast ion conductor as cathode material for Li-ion batteries. Electrochim. Acta 176, 1464–1475 (2015)

    Article  CAS  Google Scholar 

  152. Choi, W., Benayard, A., Park, J.H., et al.: Versatile coating of lithium conductive Li2TiF6 on over-lithiated layered oxide in lithium-ion batteries. Electrochim. Acta 117, 492–497 (2014)

    Article  CAS  Google Scholar 

  153. Meng, H., Li, L., Liu, J., et al.: Surface modification of Li-rich layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 oxide with LiV3O8 as a cathode material for Li-ion batteries. J. Alloys Compd. 690, 256–266 (2017)

    Article  CAS  Google Scholar 

  154. Fu, Q., Du, F., Bian, X., et al.: Electrochemical performance and thermal stability of Li1.18Co0.15Ni 0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4. J. Mater. Chem. A 2, 7555–7562 (2014)

    Article  CAS  Google Scholar 

  155. Ahn, J., Kim, J.H., Cho, B.W., et al.: Nanoscale zirconium-abundant surface layers on lithium-and manganese-rich layered oxides for high-rate lithium-ion batteries. Nano Lett. 17, 7869–7877 (2017)

    Article  CAS  PubMed  Google Scholar 

  156. Qiao, Q., Zhang, H., Li, G., et al.: Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries. J. Mater. Chem. A 1, 5262–5268 (2013)

    Article  CAS  Google Scholar 

  157. Prakasha, K.R., Sathish, M., Bera, P., et al.: Mitigating the surface degradation and voltage decay of Li1.2Ni0. 13Mn0.54Co0.13O2 cathode material through surface modification using Li2ZrO3. ACS Omega 2, 2308–2316 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Guo, S., Yu, H., Liu, P., et al.: Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries. J. Mater. Chem. A 2, 4422–4428 (2014)

    Article  CAS  Google Scholar 

  159. Liu, Y., Wang, Q., Lu, Y., et al.: Enhanced electrochemical performances of layered cathode material Li1.5Ni0.25Mn0.75O2.5 by coating with LiAlO2. J. Alloys Compd. 638, 1–6 (2015)

    Article  CAS  Google Scholar 

  160. Wu, F., Wang, Z., Su, Y., et al.: Li [Li0.2Mn0.54Ni0.13Co0.13]O2-MoO3 composite cathodes with low irreversible capacity loss for lithium ion batteries. J. Power Sources 247, 20–25 (2014)

    Article  CAS  Google Scholar 

  161. Kong, J.Z., Wang, C.L., Qian, X., et al.: Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0. 13O2 by surface modification with graphene-like lithium-active MoS2. Electrochim. Acta 174, 542–550 (2015)

    Article  CAS  Google Scholar 

  162. Kong, J.Z., Xu, L.P., Wang, C.L., et al.: Facile coating of conductive poly (vinylidene fluoride-trifluoroethylene) copolymer on Li1.2Mn0.54Ni0.13Co0.13O2 as a high electrochemical performance cathode for Li-ion battery. J. Alloys Compd. 719, 401–410 (2017)

    Article  CAS  Google Scholar 

  163. Du, K., Yang, F., Hu, G., et al.: Sodium additive to improve rate performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 material for Li-ion batteries. J. Power Sources 244, 29–34 (2013)

    Article  CAS  Google Scholar 

  164. Li, Q., Li, G., Fu, C., et al.: K+-Doped Li1.2Mn0.54Co0.13Ni0.13O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10330–10341 (2014)

    Article  CAS  PubMed  Google Scholar 

  165. Zheng, Z., Guo, X.D., Zhong, Y.J., et al.: Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt: toward superior electrochemical performances. Electrochim. Acta 188, 336–343 (2016)

    Article  CAS  Google Scholar 

  166. Yu, R., Wang, X., Fu, Y., et al.: Effect of magnesium doping on properties of lithium-rich layered oxide cathodes based on a one-step co-precipitation strategy. J. Mater. Chem. A 4, 4941–4951 (2016)

    Article  CAS  Google Scholar 

  167. Yan, W., Xie, Y., Jiang, J., et al.: Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method. ACS Sustain. Chem. Eng. 6, 4625–4632 (2018)

    Article  CAS  Google Scholar 

  168. Ramesha, R.N., Laisa, C.P., Ramesha, K.: Improving electrochemical stability by transition metal cation doping for manganese in lithium-rich layered cathode, Li1.2Ni0.13Co0.13Mn0.54−xMxO2 (M = Co, Cr and Fe). Electrochim. Acta 249, 377–386 (2017)

    Article  CAS  Google Scholar 

  169. Li, N., An, R., Su, Y., et al.: The role of yttrium content in improving electrochemical performance of layered lithium-rich cathode materials for Li-ion batteries. J. Mater. Chem. A 1, 9760–9767 (2013)

    Article  CAS  Google Scholar 

  170. Qiao, Q.Q., Qin, L., Li, G.R., et al.: Sn-stabilized Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as a cathode for advanced lithium-ion batteries. J. Mater. Chem. A 3, 17627–17634 (2015)

    Article  CAS  Google Scholar 

  171. Feng, X., Gao, Y., Ben, L., et al.: Enhanced electrochemical performance of Ti-doped Li1.2Mn0.54Co0.13Ni0.13O2 for lithium-ion batteries. J. Power Sources 317, 74–80 (2016)

    Article  CAS  Google Scholar 

  172. He, Z., Wang, Z., Chen, H., et al.: Electrochemical performance of zirconium doped lithium rich layered Li1.2Mn0.54Ni0.13Co0.13O2 oxide with porous hollow structure. J. Power Sources 299, 334–341 (2015)

    Article  CAS  Google Scholar 

  173. Shang, H., Ning, F., Li, B., et al.: Suppressing voltage decay of lithium-rich cathode material by surface enrichment with atomic ruthenium. ACS Appl. Mater. Interfaces 10, 21349–21355 (2018)

    Article  CAS  PubMed  Google Scholar 

  174. Song, B., Lai, M.O., Lu, L.: Influence of Ru substitution on Li-rich 0.55Li2MnO3·0.45 LiNi1/3Co1/3Mn1/3O2 cathode for Li-ion batteries. Electrochim. Acta 80, 187–195 (2012)

    Article  CAS  Google Scholar 

  175. Zhang, H.Z., Li, F., Pan, G.L., et al.: The effect of polyanion-doping on the structure and electrochemical performance of Li-rich layered oxides as cathode for lithium-ion batteries. J. Electrochem. Soc. 162, A1899–A1904 (2015)

    Article  CAS  Google Scholar 

  176. Huang, J., Liu, H., Hu, T., et al.: Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation. J. Power Sources 375, 21–28 (2018)

    Article  CAS  Google Scholar 

  177. Kleiner, K., Strehle, B., Baker, A.R., et al.: Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study. Chem. Mater. 30, 3656–3667 (2018)

    Article  CAS  Google Scholar 

  178. Johnson, C.S., Li, N., Lefief, C., et al.: Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x) LiMn0.333Ni0.333Co0.333O2 (0 \(\leqslant\) x \(\leqslant\) 0.7). Chem. Mater. 20, 6095–6106 (2008)

    Article  CAS  Google Scholar 

  179. Croy, J.R., Kim, D., Balasubramanian, M., et al.: Countering the voltage decay in high capacity xLi2MnO3∙(1–x) LiMO2 electrodes (M = Mn, Ni, Co) for Li+-Ion batteries. J. Electrochem. Soc. 159, A781–A790 (2012)

    Article  CAS  Google Scholar 

  180. Oh, P., Ko, M., Myeong, S., et al.: A novel surface treatment method and new insight into discharge voltage deterioration for high-performance 0.4 Li2MnO3–0.6 LiNi1/3Co1/3Mn1/3O2 cathode materials. Adv. Energy Mater. 4, 1400631 (2014)

    Article  CAS  Google Scholar 

  181. Sathiya, M., Abakumov, A.M., Foix, D., et al.: Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230 (2015)

    Article  CAS  PubMed  Google Scholar 

  182. Wei, Z., Xia, Y., Qiu, B., et al.: Correlation between transition metal ion migration and the voltage ranges of electrochemical process for lithium-rich manganese-based material. J. Power Sources 281, 7–10 (2015)

    Article  CAS  Google Scholar 

  183. Yan, P., Zheng, J., Lv, D., et al.: Atomic-resolution visualization of distinctive chemical mixing behavior of Ni Co, and Mn with Li in layered lithium transition-metal oxide cathode materials. Chem. Mater. 27, 5393–5401 (2015)

    Article  CAS  Google Scholar 

  184. Dogan, F., Long, B.R., Croy, J.R., et al.: Re-entrant lithium local environments and defect driven electrochemistry of Li-and Mn-rich Li-ion battery cathodes. J. Am. Chem. Soc. 137, 2328–2335 (2015)

    Article  CAS  PubMed  Google Scholar 

  185. Yan, P., Zheng, J., Gu, M., et al.: Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 8, 14101 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Luo, K., Roberts, M.R., Hao, R., et al.: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684 (2016)

    Article  CAS  PubMed  Google Scholar 

  187. Yan, P., Nie, A., Zheng, J., et al.: Evolution of lattice structure and chemical composition of the surface reconstruction layer in Li1.2Ni0.2Mn0.6O2 cathode material for lithium ion batteries. Nano Lett. 15, 514–522 (2014)

    Article  CAS  PubMed  Google Scholar 

  188. Wang, H., Jang, Y.I., Huang, B., et al.: TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries. J. Electrochem. Soc. 146, 473–480 (1999)

    Article  CAS  Google Scholar 

  189. Jena, A., Lee, C.H., Pang, W.K., et al.: Capacity enhancement of the quenched Li–Ni–Mn–Co oxide high-voltage li-ion battery positive electrode. Electrochim. Acta 236, 10–17 (2017)

    Article  CAS  Google Scholar 

  190. Dong, L., Liang, F., Wang, D., et al.: Safe ionic liquid-sulfolane/LiDFOB electrolytes for high voltage Li1.15 (Ni0.36Mn0.64)0.85O2 lithium ion battery at elevated temperatures. Electrochim. Acta 270, 426–433 (2018)

    Article  CAS  Google Scholar 

  191. Ji, Y., Zhang, Z., Gao, M., et al.: Electrochemical behavior of suberonitrile as a high-potential electrolyte additive and co-solvent for Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material. J. Electrochem. Soc. 162, A774–A780 (2015)

    Article  CAS  Google Scholar 

  192. Zheng, J., Xiao, J., Gu, M., et al.: Interface modifications by anion receptors for high energy lithium ion batteries. J. Power Sources 250, 313–318 (2014)

    Article  CAS  Google Scholar 

  193. Nayak, P.K., Grinblat, J., Levi, M., et al.: Understanding the effect of lithium bis(oxalato) borate (LiBOB) on the structural and electrochemical aging of Li and Mn rich high capacity Li1.2Ni0.16Mn0.56Co0.08O2 cathodes. J. Electrochem. Soc. 162, A596–A602 (2015)

    Article  CAS  Google Scholar 

  194. Zhu, Y., Luo, X., Zhi, H., et al.: Structural exfoliation of layered cathode under high voltage and its suppression by interface film derived from electrolyte additive. ACS Appl. Mater. Interfaces 9, 12021–12034 (2017)

    Article  CAS  PubMed  Google Scholar 

  195. Zhu, Y., Li, Y., Bettge, M., et al.: Electrolyte additive combinations that enhance performance of high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-graphite cells. Electrochim. Acta 110, 191–199 (2013)

    Article  CAS  Google Scholar 

  196. Wu, Q., Lu, W., Miranda, M., et al.: Effects of lithium difluoro (oxalate) borate on the performance of Li-rich composite cathode in Li-ion battery. Electrochem. Commun. 24, 78–81 (2012)

    Article  CAS  Google Scholar 

  197. Tu, W., Xia, P., Zheng, X., et al.: Insight into the interaction between layered lithium-rich oxide and additive-containing electrolyte. J. Power Sources 341, 348–356 (2017)

    Article  CAS  Google Scholar 

  198. Birrozzi, A., Laszczynski, N., Hekmatfar, M., et al.: Beneficial effect of propane sultone and tris (trimethylsilyl) borate as electrolyte additives on the cycling stability of the lithium rich nickel manganese cobalt (NMC) oxide. J. Power Sources 325, 525–533 (2016)

    Article  CAS  Google Scholar 

  199. Lim, S.H., Cho, W., Kim, Y.J., et al.: Insight into the electrochemical behaviors of 5 V-class high-voltage batteries composed of lithium-rich layered oxide with multifunctional additive. J. Power Sources 336, 465–474 (2016)

    Article  CAS  Google Scholar 

  200. Wang, L., Ma, Y., Li, Q., et al.: 1,3,6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode. J. Power Sources 361, 227–236 (2017)

    Article  CAS  Google Scholar 

  201. Chen, Z., Liu, J., Amine, K.: Impact of tripropyl borate on life and impedance of lithium-ion cells. Electrochim. Acta 53, 3267–3270 (2008)

    Article  CAS  Google Scholar 

  202. Pires, J., Castets, A., Timperman, L., et al.: Tris (2, 2, 2-trifluoroethyl) phosphite as an electrolyte additive for high-voltage lithium-ion batteries using lithium-rich layered oxide cathode. J. Power Sources 296, 413–425 (2015)

    Article  CAS  Google Scholar 

  203. Tan, S., Zhang, Z., Li, Y., et al.: Tris(hexafluoro-iso-propyl) phosphate as an SEI-forming additive on improving the electrochemical performance of the Li[Li0.2Mn0. 56Ni0.16Co0.08]O2 cathode material. J. Electrochem. Soc. 160, A285–A292 (2013)

    Article  CAS  Google Scholar 

  204. Pham, H.Q., Kim, G., Jung, H.M., et al.: Fluorinated polyimide as a novel high-voltage binder for high-capacity cathode of lithium-ion batteries. Adv. Funct. Mater. 28, 1704690 (2018)

    Article  CAS  Google Scholar 

  205. Zhang, S., Gu, H., Pan, H., et al.: A novel strategy to suppress capacity and voltage fading of Li-and Mn-rich layered oxide cathode material for lithium-ion batteries. Adv. Energy Mater. 7, 1601066 (2017)

    Article  CAS  Google Scholar 

  206. Liu, W., Oh, P., Liu, X., et al.: Countering voltage decay and capacity fading of lithium-rich cathode material at 60 C by hybrid surface protection layers. Adv. Energy Mater. 5, 1500274 (2015)

    Article  CAS  Google Scholar 

  207. Kim, S., Cho, W., Zhang, X., et al.: A stable lithium-rich surface structure for lithium-rich layered cathode materials. Nat. Commun. 7, 13598 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Ates, M.N., Jia, Q., Shah, A., et al.: Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 161, A290–A301 (2014)

    Article  CAS  Google Scholar 

  209. Wang, D., Huang, Y., Huo, Z., et al.: Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 cathode material. Electrochim. Acta 107, 461–466 (2013)

    Article  CAS  Google Scholar 

  210. Yu, Z., Shang, S.L., Gordin, M.L., et al.: Ti-substituted Li[Li0.26Mn0.6−xTixNi0.07Co0.07]O2 layered cathode material with improved structural stability and suppressed voltage fading. J. Mater. Chem. A 3, 17376–17384 (2015)

    Article  CAS  Google Scholar 

  211. Li, L., Song, B.H., Chang, Y.L., et al.: Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. J. Power Sources 283, 162–170 (2015)

    Article  CAS  Google Scholar 

  212. Li, Z., Du, F., Bie, X., et al.: Electrochemical kinetics of the Li[Li0. 23Co0. 3Mn0. 47]O2 cathode material studied by GITT and EIS. J. Phys. Chem. C 114, 22751–22757 (2010)

    Article  CAS  Google Scholar 

  213. Ates, M.N., Mukerjee, S., Abraham, K.: A Li-rich layered cathode material with enhanced structural stability and rate capability for Li-on batteries. J. Electrochem. Soc. 161, A355–A363 (2014)

    Article  CAS  Google Scholar 

  214. Nayak, P.K., Grinblat, J., Levi, E., et al.: Remarkably improved electrochemical performance of Li-and Mn-rich cathodes upon substitution of Mn with Ni. ACS Appl. Mater. Interfaces 9, 4309–4319 (2016)

    Article  CAS  Google Scholar 

  215. Massarotti, V., Capsoni, D., Bini, M., et al.: Electric and magnetic properties of LiMn2O4-and Li2MnO3-type oxides. J. Solid State Chem. 131, 94–100 (1997)

    Article  CAS  Google Scholar 

  216. Vendra, V.K., Nguyen, T.Q., Thapa, A.K., et al.: Scalable synthesis and surface stabilization of Li2MnO3 NWs as high rate cathode materials for Li-ion batteries. RSC Adv. 5, 36906–36912 (2015)

    Article  CAS  Google Scholar 

  217. Liu, J., Reeja-Jayan, B., Manthiram, A.: Conductive surface modification with aluminum of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes. J. Phys. Chem. C 114, 9528–9533 (2010)

    Article  CAS  Google Scholar 

  218. Urban, A., Matts, I., Abdellahi, A., et al.: Computational design and preparation of cation-disordered oxides for high-energy-density Li-ion batteries. Adv. Energy Mater. 6, 1600488 (2016)

    Article  CAS  Google Scholar 

  219. Lee, J., Urban, A., Li, X., et al.: Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014)

    Article  CAS  PubMed  Google Scholar 

  220. Johnson, C.S., Kim, J.S., Lefief, C., et al.: The significance of the Li2MnO3 component in “composite” xLi2MnO3·(1–x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004)

    Article  CAS  Google Scholar 

  221. Oh, P., Oh, S.M., Li, W., et al.: High-performance heterostructured cathodes for lithium-ion batteries with a Ni-rich layered oxide core and a Li-rich layered oxide shell. Adv. Sci. 3, 1600184 (2016)

    Article  CAS  Google Scholar 

  222. Kim, D., Sandi, G., Croy, J.R., et al.: Composite “layered-layered-spinel” cathode structures for lithium-ion batteries. J. Electrochem. Soc. 160, A31–A38 (2013)

    Article  CAS  Google Scholar 

  223. Cheng, F., Chen, J., Zhou, H., et al.: Structural and electrochemical characterization of (NH4)HPO4-treated lithium-rich layered Li1.2Ni0.2Mn0.6O2 cathodes for lithium-ion batteries. J. Electrochem. Soc. 160, A1661–A1667 (2013)

    Article  CAS  Google Scholar 

  224. Zheng, J., Deng, S., Shi, Z., et al.: The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material. J. Power Sources 221, 108–113 (2013)

    Article  CAS  Google Scholar 

  225. Han, S., Qiu, B., Wei, Z., et al.: Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material. J. Power Sources 268, 683–691 (2014)

    Article  CAS  Google Scholar 

  226. Denis, Y., Yanagida, K., Nakamura, H.: Surface modification of Li-excess Mn-based cathode materials. J. Electrochem. Soc. 157, A1177–A1182 (2010)

    Article  CAS  Google Scholar 

  227. Liu, H., Du, C., Yin, G., et al.: An Li-rich oxide cathode material with mosaic spinel grain and a surface coating for high performance Li-ion batteries. J. Mater. Chem. A 2, 15640–15646 (2014)

    Article  CAS  Google Scholar 

  228. Wu, F., Li, N., Su, Y., et al.: Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv. Mater. 25, 3722–3726 (2013)

    Article  CAS  PubMed  Google Scholar 

  229. Wang, D., Wang, X., Yang, X., et al.: Polyaniline modification and performance enhancement of lithium-rich cathode material based on layered-spinel hybrid structure. J. Power Sources 293, 89–94 (2015)

    Article  CAS  Google Scholar 

  230. Song, B., Liu, H., Liu, Z., et al.: High rate capability caused by surface cubic spinels in Li-rich layer-structured cathodes for Li-ion batteries. Sci. Rep. 3, 3094 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  231. Oh, P., Myeong, S., Cho, W., et al.: Superior long-term energy retention and volumetric energy density for Li-rich cathode materials. Nano Lett. 14, 5965–5972 (2014)

    Article  CAS  PubMed  Google Scholar 

  232. Zhang, H.Z., Qiao, Q.Q., Li, G.R., et al.: Surface nitridation of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide as cathode material for lithium-ion battery. J. Mater. Chem. 22, 13104–13109 (2012)

    Article  CAS  Google Scholar 

  233. Wei, G.Z., Lu, X., Ke, F.S., et al.: Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3NixMn2/3−x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 22, 4364–4367 (2010)

    Article  CAS  PubMed  Google Scholar 

  234. Zhang, L., Li, N., Wu, B., et al.: Sphere-shaped hierarchical cathode with enhanced growth of nanocrystal planes for high-rate and cycling-stable li-ion batteries. Nano Lett. 15, 656–661 (2014)

    Article  CAS  PubMed  Google Scholar 

  235. Li, J., Camardese, J., Shunmugasundaram, R., et al.: Synthesis and characterization of the lithium-rich core-shell cathodes with low irreversible capacity and mitigated voltage fade. Chem. Mater. 27, 3366–3377 (2015)

    Article  CAS  Google Scholar 

  236. Noh, J.K., Kim, S., Kim, H., et al.: Mechanochemical synthesis of Li2MnO3 shell/LiMO2 (M = Ni Co, Mn) core-structured nanocomposites for lithium-ion batteries. Sci. Rep. 4, 4847 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Pajot, S., Feydi, P., Weill, F., et al.: Synthesis of Li and Mn-rich layered oxides as concentration-gradients for lithium-ion batteries. J. Electrochem. Soc. 165, A425–A433 (2018)

    Article  CAS  Google Scholar 

  238. Zheng, J., Wu, X., Yang, Y.: Improved electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material by fluorine incorporation. Electrochim. Acta 105, 200–208 (2013)

    Article  CAS  Google Scholar 

  239. Sathiya, M., Rousse, G., Ramesha, K., et al.: Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827 (2013)

    Article  CAS  PubMed  Google Scholar 

  240. Jiang, Y., Yang, Z., Luo, W., et al.: Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 15, 2954–2960 (2013)

    Article  CAS  PubMed  Google Scholar 

  241. Fu, F., Tang, J., Yao, Y., et al.: Hollow porous hierarchical-structured 0.5Li2MnO3·0.5LiMn0.4Co0 3Ni0.3O2 as a high-performance cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 25654–25659 (2016)

    Article  CAS  PubMed  Google Scholar 

  242. Chen, L., Su, Y., Chen, S., et al.: Hierarchical Li1.2Ni0.2Mn0. 6O2 nanoplates with exposed {010} planes as high-performance cathode material for lithium-ion batteries. Adv. Mater. 26, 6756–6760 (2014)

    Article  CAS  PubMed  Google Scholar 

  243. Xu, M., Fei, L., Zhang, W., et al.: Tailoring anisotropic Li-Ion transport tunnels on orthogonally arranged Li-rich layered oxide nanoplates toward high-performance Li-ion batteries. Nano Lett. 17, 1670–1677 (2017)

    Article  CAS  PubMed  Google Scholar 

  244. He, X., Wang, J., Wang, R., et al.: A 3D porous Li-rich cathode material with an in situ modified surface for high performance lithium ion batteries with reduced voltage decay. J. Mater. Chem. A 4, 7230–7237 (2016)

    Article  CAS  Google Scholar 

  245. Lin, F., Markus, I.M., Nordlund, D., et al.: Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 5, 3529 (2014)

    Article  CAS  PubMed  Google Scholar 

  246. Martha, S.K., Nanda, J., Veith, G.M., et al.: Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources 199, 220–226 (2012)

    Article  CAS  Google Scholar 

  247. Yabuuchi, N., Yoshii, K., Myung, S.T., et al.: Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2. J. Am. Chem. Soc. 133, 4404–4419 (2011)

    Article  CAS  PubMed  Google Scholar 

  248. Zheng, X., Wang, X., Cai, X., et al.: Constructing a protective interface film on layered lithium-rich cathode using an electrolyte additive with special molecule structure. ACS Appl. Mater. Interfaces 8, 30116–30125 (2016)

    Article  CAS  PubMed  Google Scholar 

  249. Cha, J., Han, J.G., Hwang, J., et al.: Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro (oxalato) borate, in high-voltage lithium-ion batteries. J. Power Sources 357, 97–106 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This review was conducted with the support of the Australian Research Council (ARC) through the Future Fellowship projects (FT150100109 and FT160100251) and funding from the NSFC (51474110), the Natural Science Foundation of Hubei Province (2018CFB192) and the CSC (201608420205). We would also like to thank Dr. Tania Silver for her critical review of the manuscript and her valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Kong Pang or Zaiping Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Pillai, A.S., Liang, G. et al. Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives. Electrochem. Energ. Rev. 2, 277–311 (2019). https://doi.org/10.1007/s41918-019-00032-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41918-019-00032-8

Keywords

Navigation