Skip to main content
Log in

Advances in magnetic nanoparticle-based magnetic resonance imaging contrast agents

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Magnetic resonance imaging (MRI) has revolutionized medical imaging diagnostics with the advantages of non-invasive nature, absence of ionizing radiation, unrestricted penetration depth, high-resolution imaging of soft tissues, organs and blood vessels, and multi-parameter and multi-sequence imaging. Contrast agents (CAs) are crucial for enhancing image quality, detecting molecular-level changes, and providing comprehensive diagnostic information in contrast enhanced MRI. However, the performance of clinical Gd-based CAs represents a limitation to the improvement of MRI sensitivity, specificity, and versatility, thereby impeding the achievement of satisfactory imaging outcomes. In recent years, the development of magnetic nanoparticle-based CAs has emerged as a promising avenue to enhance the capabilities of MRI. Here, we review the advances in magnetic nanoparticle-based MRI CAs, including blood pool CAs, biochemically-targeted CAs, stimulus-responsive CAs, and ultra-high field MRI CAs, as well as the use of CAs for cell labeling and tracking. Additionally, we offer insights into the future prospects and challenges associated with the integration of these nanoparticles into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowe, S. P.; Pomper, M. G. Molecular imaging in oncology: Current impact and future directions. CA: Cancer J. Clin. 2022, 72, 333–352.

    Google Scholar 

  2. Kircher, M. F.; Willmann, J. K. Molecular body imaging: MR imaging, CT, and US. Part I. Principles. Radiology 2012, 263, 633–643.

    Google Scholar 

  3. Kircher, M. F.; Willmann, J. K. Molecular body imaging: MR imaging, CT, and US. Part II Applications. Radiology 2012, 264, 349–368.

    Google Scholar 

  4. Weissleder, R.; Pittet, M. J. Imaging in the era of molecular oncology. Nature 2008, 452, 580–589.

    CAS  Google Scholar 

  5. Park, S. M.; Aalipour, A.; Vermesh, O.; Yu, J. H.; Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2017, 2, 17014.

    CAS  Google Scholar 

  6. Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352.

    CAS  Google Scholar 

  7. Na, H. B.; Hyeon, T. Nanostructured T1 MRI contrast agents. J. Mater. Chem. 2009, 19, 6267–6273.

    CAS  Google Scholar 

  8. Mulé, S.; Pregliasco, A. G.; Tenenhaus, A.; Kharrat, R.; Amaddeo, G.; Baranes, L.; Laurent, A.; Regnault, H.; Sommacale, D.; Djabbari, M. et al. Multiphase liver MRI for identifying the macrotrabecular-massive subtype of hepatocellular carcinoma. Radiology 2020, 295, 562–571.

    Google Scholar 

  9. Wahsner, J.; Gale, E. M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: Current challenges and new frontiers. Chem. Rev. 2019, 119, 957–1057

    CAS  Google Scholar 

  10. Kim, B. H.; Lee, N.; Kim, H.; An, K.; Park, Y. I.; Choi, Y.; Shin, K.; Lee, Y.; Kwon, S. G.; Na, H. B. et al. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 2011, 733, 12624–12631.

    Google Scholar 

  11. Gale, E. M.; Wey, H. Y.; Ramsay, I.; Yen, Y. F.; Sosnovik, D. E.; Caravan, P. A manganese-based alternative to gadolinium: Contrast-enhanced MR angiography, excretion, pharmacokinetics, and metabolism. Radiology 2018, 286, 865–872.

    Google Scholar 

  12. Jeon, M.; Halbert, M. V.; Stephen, Z. R.; Zhang, M. Q. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging: Fundamentals, challenges, applications, and prospectives. Adv. Mater. 2021, 33, 1906539.

    CAS  Google Scholar 

  13. Kwon, H. J.; Shin, K.; Soh, M.; Chang, H.; Kim, J.; Lee, J.; Ko, G.; Kim, B. H.; Kim, D.; Hyeon, T. Large-scale synthesis and medical applications of uniform-sized metal oxide nanoparticles. Adv. Mater. 2018, 30, 1704290.

    Google Scholar 

  14. Zhou, Z. J.; Yang, L. J.; Gao, J. H.; Chen, X. Y. Structure-relaxivity relationships of magnetic nanoparticles for magnetic resonance imaging. Adv. Mater. 2019, 31, 1804567.

    Google Scholar 

  15. Shen, Z. Y.; Chen, T. X.; Ma, X. H.; Ren, W. Z.; Zhou, Z. J.; Zhu, G. Z.; Zhang, A.; Liu, Y. J.; Song, J. B.; Li, Z. H. et al. Multifunctional theranostic nanoparticles based on exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging and chemotherapy. ACS Nano 2017, 11, 10992–11004.

    CAS  Google Scholar 

  16. Zeng, J. F.; Jing, L. H.; Hou, Y.; Jiao, M. X.; Qiao, R. R.; Jia, Q. J.; Liu, C. Y.; Fang, F.; Lei, H.; Gao, M. Y. Anchoring group effects of surface ligands on magnetic properties of Fe3O4 nanoparticles: Towards high performance MRI contrast agents. Adv. Mater. 2014, 26, 2694–2698.

    CAS  Google Scholar 

  17. Yang, L. J.; Wang, Z. Y.; Ma, L. C.; Li, A.; Xin, J. Y.; Wei, R. X.; Lin, H. Y.; Wang, R. F.; Chen, Z.; Gao, J. H. The roles of morphology on the relaxation rates of magnetic nanoparticles. ACS Nano 2018, 72, 4605–4614.

    Google Scholar 

  18. Zhang, H.; Li, L.; Liu, X. L.; Jiao, J.; Ng, C. T.; Yi, J. B.; Luo, Y. E.; Bay, B. H.; Zhao, L. Y.; Peng, M. L. et al. Ultrasmall ferrite nanoparticles synthesized via dynamic simultaneous thermal decomposition for high-performance and multifunctional T1 magnetic resonance imaging contrast agent. ACS Nano 2017, 11, 3614–3631.

    CAS  Google Scholar 

  19. Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

    CAS  Google Scholar 

  20. Liu, X. L.; Zhang, H.; Zhang, T. B.; Wang, Y. Y.; Jiao, W. B.; Lu, X. F.; Gao, X.; Xie, M. M.; Shan, Q. F.; Wen, N. N. et al. Magnetic nanomaterials-mediated cancer diagnosis and therapy. Prog. Biomed. Eng. 2022, 4, 012005.

    Google Scholar 

  21. Boles, M. A.; Ling, D. S.; Hyeon, T.; Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 2016, 15, 141–153.

    CAS  Google Scholar 

  22. Li, F. Y.; Lu, J. X.; Kong, X. Q.; Hyeon, T.; Ling, D. S. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater. 2017, 29, 1605897.

    Google Scholar 

  23. Wang, Y. X. J. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J. Gastroenterol. 2015, 21, 13400–13402.

    CAS  Google Scholar 

  24. Ni, D. L.; Bu, W. B.; Ehlerding, E. B.; Cai, W. B.; Shi, J. L. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2017, 46, 7438–7468.

    CAS  Google Scholar 

  25. Barrow, M.; Taylor, A.; Murray, P.; Rosseinsky, M. J.; Adams, D. J. Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI. Chem. Soc. Rev. 2015, 44, 6733–6748.

    CAS  Google Scholar 

  26. Na, H. B.; Song, I. C.; Hyeon, T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 2009, 21, 2133–2148.

    CAS  Google Scholar 

  27. Lauffer, R. B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem. Rev. 1987, 87, 901–927.

    CAS  Google Scholar 

  28. Wang, Y. X. J.; Hussain, S. M.; Krestin, G. P. Superparamagnetic iron oxide contrast agents: Physicochemical characteristics and applications in MR imaging. Eur. Radiol. 2001, 11, 2319–2331.

    CAS  Google Scholar 

  29. Li, Z.; Wei, L.; Gao, M. Y.; Lei, H. One-pot reaction to synthesize biocompatible magnetite nanoparticles. Adv. Mater. 2005, 17, 1001–1005.

    Google Scholar 

  30. Hu, F. Q.; Wei, L.; Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv. Mater. 2006, 18, 2553–2556.

    CAS  Google Scholar 

  31. Qiao, R. R.; Yang, C. H.; Gao, M. Y. Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mater. Chem. 2009, 19, 6274–6293.

    CAS  Google Scholar 

  32. Jun, Y. W.; Lee, J. H.; Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew. Chem., Int. Ed. 2008, 47, 5122–5135.

    CAS  Google Scholar 

  33. Cheon, J.; Lee, J. H. Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 2008, 41, 1630–1640.

    CAS  Google Scholar 

  34. Lee, J. H.; Huh, Y. M.; Jun, Y. W.; Seol, J. W.; Jang, J. T.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99.

    CAS  Google Scholar 

  35. Wang, Y. X. J. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011, 1, 35–40.

    Google Scholar 

  36. Harisinghani, M. G.; Barentsz, J.; Hahn, P. F.; Deserno, W. M.; Tabatabaei, S.; van de Kaa, C. H.; de la Rosette, J.; Weissleder, R. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 2003, 348, 2491–2499.

    Google Scholar 

  37. Low, R. N. Contrast agents for MR imaging of the liver. J. Magn. Reson. Imaging 1997, 7, 56–67.

    CAS  Google Scholar 

  38. Semelka, R. C.; Helmberger, T. K. G. Contrast agents for MR imaging of the liver. Radiology 2001, 218, 27–38.

    CAS  Google Scholar 

  39. Balci, N. C.; Semelka, R. C. Contrast agents for MR imaging of the liver. Radiol. Clin. North Am. 2005, 43, 887–898.

    Google Scholar 

  40. Bashir, M. R.; Bhatti, L.; Marin, D.; Nelson, R. C. Emegging applications for ferumoxytol as a contrast agent in MRI. J. Magn. Reson. Imaging 2015, 41, 884–898.

    Google Scholar 

  41. Shahrouki, P.; Khan, S. N.; Yoshida, T.; Iskander, P. J.; Ghahremani, S.; Finn, J. P. High-resolution three-dimensional contrast-enhanced magnetic resonance venography in children: Comparison of gadofosveset trisodium with ferumoxytol. Pediatr. Radiol. 2022, 52, 501–512.

    Google Scholar 

  42. Stabi, K. L.; Bendz, L. M. Ferumoxytol use as an intravenous contrast agent for magnetic resonance angiography. Ann. Pharmacother. 2011, 45, 1571–1575.

    CAS  Google Scholar 

  43. Bashir, M. R.; Jaffe, T. A.; Brennan, T. V.; Patel, U. D.; Ellis, M. J. Renal transplant imaging using magnetic resonance angiography with a nonnephrotoxic contrast agent. Transplantation 2013, 96, 91–96.

    CAS  Google Scholar 

  44. Ruangwattanapaisarn, N.; Hsiao, A.; Vasanawala, S. S. Ferumoxytol as an off-label contrast agent in body 3T MR angiography: A pilot study in children. Pediatr. Radiol. 2015, 45, 831–839.

    Google Scholar 

  45. Bowman, A. W.; Gooch, C. R.; Alexander, L. F. Desai, M. A.; Bolan, C. W. Vascular applications of ferumoxytol-enhanced magnetic resonance imaging of the abdomen and pelvis. Abdom. Radiol. 2021, 46, 2203–2218.

    Google Scholar 

  46. Sigovan, M.; Gasper, W.; Alley, H. F.; Owens, C. D.; Saloner, D. USPIO-enhanced MR angiography of arteriovenous fistulas in patients with renal failure. Radiology 2012, 265, 584–590

    Google Scholar 

  47. Hansch, A.; Betge, S.; Poehlmann, G.; Neumann, S.; Baltzer, P.; Pfeil, A.; Waginger, M.; Boettcher, J.; Kaiser, W. A.; Wolf, G. et al. Combined magnetic resonance imaging of deep venous thrombosis and pulmonary arteries after a single injection of a blood pool contrast agent. Eur. Radiol. 2011, 21, 318–325.

    Google Scholar 

  48. Thompson, E. M.; Guillaume, D. J.; Dósa, E.; Li, X.; Nazemi, K. J.; Gahramanov, S.; Hamilton, B. E.; Neuwelt, E. A. Dual contrast perfusion MRI in a single imaging session for assessment of pediatric brain tumors. J. Neuro-Oncol. 2012, 109, 105–114.

    Google Scholar 

  49. Dósa, E.; Tuladhar, S.; Muldoon, L. L.; Hamilton, B. E.; Rooney, W. D.; Neuwelt, E. A. MRI using Ferumoxytol improves the visualization of central nervous system vascular malformations. Stroke 2011, 42, 1581–1588.

    Google Scholar 

  50. Gharagouzloo, C. A.; McMahon, P. N.; Sridhar, S. Quantitative contrast-enhanced MRI with superparamagnetic nanoparticles using ultrashort time-to-echo pulse sequences. Magn. Reson. Med. 2015, 74, 431–441.

    CAS  Google Scholar 

  51. Niendorf, T.; Seeliger, E.; Cantow, K.; Flemming, B.; Waiczies, S.; Pohlmann, A. Probing renal blood volume with magnetic resonance imaging. Acta Physiol. 2020, 228, e13435.

    CAS  Google Scholar 

  52. Choi, H. S.; Liu, W. H.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170.

    CAS  Google Scholar 

  53. Yu, M. X.; Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 2015, 9, 6655–6674.

    CAS  Google Scholar 

  54. Lu, X. Y.; Zhou, H. M.; Liang, Z. Y.; Feng, J.; Lu, Y. D.; Huang, L.; Qiu, X. Z.; Xu, Y. K.; Shen, Z. Y. Biodegradable and biocompatible exceedingly small magnetic iron oxide nanoparticles for T1-weighted magnetic resonance imaging of tumors. J. Nanobiotechnol. 2022, 30, 350.

    Google Scholar 

  55. Lu, Y.; Xu, Y. J.; Zhang, G. B.; Ling, D. S.; Wang, M. Q.; Zhou, Y.; Wu, Y. D.; Wu, T.; Hackett, M. J.; Kim, B. H. et al. Iron oxide nanoclusters for T1 magnetic resonance imaging of non-human primates. Nat. Biomed. Eng. 2017, 1, 637–643.

    CAS  Google Scholar 

  56. Wei, H.; Bruns, O. T.; Kaul, M. G.; Hansen, E. C.; Barch, M.; Wiśniowska, A.; Chen, O.; Chen, Y.; Li, N.; Okada, S. et al. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents. Proc. Natl. Acad. Sci. USA 2017, 114, 2325–2330.

    CAS  Google Scholar 

  57. Miao, Y. Q.; Zhang, H.; Cai, J.; Chen, Y. M.; Ma, H. J.; Zhang, S.; Yi, J. B.; Liu, X. L.; Bay, B. H.; Guo, Y. K. et al. Structure–relaxivity mechanism of an ultrasmall ferrite nanoparticle T1 MR contrast agent: The impact of dopants controlled crystalline core and surface disordered shell. Nano Lett. 2021, 21, 1115–1123.

    CAS  Google Scholar 

  58. Shen, Z. Y.; Song, J. B.; Zhou, Z. J.; Yung, B. C.; Aronova, M. A.; Li, Y.; Dai, Y. L.; Fan, W. P.; Liu, Y. J.; Li, Z. H. et al. Dotted core-shell nanoparticles for T1-weighted MRI of tumors. Adv. Mater. 2018, 30, 1803163.

    Google Scholar 

  59. Wei, Z. N.; Jiang, Z. Q.; Pan, C. S.; Xia, J. B.; Xu, K. W.; Xue, T.; Yuan, B.; Akakuru, O. U.; Zhu, C. J.; Zhang, G. L. et al. Ten-gram-scale facile synthesis of organogadolinium complex nanoparticles for tumor diagnosis. Small 2020, 16, 1906870.

    CAS  Google Scholar 

  60. Lu, Y. D.; Liang, Z. Y.; Feng, J.; Huang, L.; Guo, S.; Yi, P. W.; Xiong, W.; Chen, S. J.; Yang, S.; Xu, Y. K. et al. Facile synthesis of weakly ferromagnetic organogadolinium macrochelates-based T1-weighted magnetic resonance imaging contrast agents. Adv. Sci. 2023, 10, 2205109.

    CAS  Google Scholar 

  61. Shen, Z. Y.; Fan, W. P.; Yang, Z.; Liu, Y. J.; Bregadze, V. I.; Mandal, S. K.; Yung, B. C.; Lin, L. S.; Liu, T.; Tang, W. et al. Exceedingly small gadolinium oxide nanoparticles with remarkable relaxivities for magnetic resonance imaging of tumors. Small 2019, 15, 1903422.

    CAS  Google Scholar 

  62. Shen, Z. Y.; Liu, T.; Yang, Z.; Zhou, Z. J.; Tang, W.; Fan, W. P.; Liu, Y. J.; Mu, J.; Li, L.; Bregadze, V. I. et al. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials 2020, 235, 119783.

    CAS  Google Scholar 

  63. Hanahan, D. Hallmarks of cancer: New dimensions. Cancer Discov. 2022, 12, 31–46.

    CAS  Google Scholar 

  64. Abakumov, M. A.; Nukolova, N. V.; Sokolsky-Papkov, M.; Shein, S. A.; Sandalova, T. O.; Vishwasrao, H. M.; Grinenko, N. F.; Gubsky, I. L.; Abakumov, A. M.; Kabanov, A. V. et al. VEGF-targeted magnetic nanoparticles for MRI visualization of brain tumor. Nanomedicine: Nanotechnol. Biol. Med. 2015, 11, 825–833.

    CAS  Google Scholar 

  65. Ngen, E. J.; Azad, B. B.; Boinapally, S.; Lisok, A.; Brummet, M.; Jacob, D.; Pomper, M. G.; Banerjee, S. R. MRI assessment of prostate-specific membrane antigen (PSMA) targeting by a PSMA-targeted magnetic nanoparticle: Potential for image-guided therapy. Mol. Pharmaceutics 2019, 16, 2060–2068.

    CAS  Google Scholar 

  66. Fernández-Barahona, I.; Gutiérrez, L.; Veintemillas-Verdaguer, S.; Pellico, J.; del Puerto Morales, M.; Catala, M.; del Pozo, M. A.; Ruiz-Cabello, J.; Herranz, F. Cu-doped extremely small iron oxide nanoparticles with large longitudinal relaxivity: One-pot synthesis and in vivo targeted molecular imaging. ACS Omega 2019, 4, 2719–2727.

    Google Scholar 

  67. Wang, X. Y.; Chen, L.; Ge, J. X.; Afshari, M. J.; Yang, L.; Miao, Q. Q.; Duan, R. X.; Cui, J. B.; Liu, C. Y.; Zeng, J. F. et al. Rational constructed ultra-small iron oxide nanoprobes manifesting high performance for T1-weighted magnetic resonance imaging of glioblastoma. Nanomaterials 2021, 11, 2601.

    CAS  Google Scholar 

  68. Schroeder, A.; Heller, D. A.; Winslow, M. M.; Dahlman, J. E.; Pratt, G. W.; Langer, R.; Jacks, T.; Anderson, D. G. Treating metastatic cancer with nanotechnology. Nat. Rev. Cancer 2012, 12, 39–50.

    CAS  Google Scholar 

  69. Kantamneni, H.; Zevon, M.; Donzanti, M. J.; Zhao, X. Y.; Sheng, Y.; Barkund, S. R.; McCabe, L. H.; Banach-Petrosky, W.; Higgins, L. M.; Ganesan, S. et al. Surveillance nanotechnology for multiorgan cancer metastases. Nat. Biomed. Eng. 2017, 1, 993–1003.

    CAS  Google Scholar 

  70. Li, Y.; Zhao, X.; Liu, X. L.; Cheng, K. M.; Han, X. X.; Zhang, Y. L.; Min, H.; Liu, G. N.; Xu, J. C.; Shi, J. et al. A bioinspired nanoprobe with multilevel responsive T1-weighted MR signal-amplification illuminates ultrasmall metastases. Adv. Mater. 2020, 32, 1906799.

    CAS  Google Scholar 

  71. Wu, Q. M.; Pan, W.; Wu, G. F.; Wu, F. S.; Guo, Y. S.; Zhang, X. X. CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques. Atherosclerosis 2023, 369, 17–26

    CAS  Google Scholar 

  72. Zhang, J. Y.; Ning, Y. Y.; Zhu, H.; Rotile, N. J.; Wei, H.; Diyabalanage, H.; Hansena, E. C.; Zhou, I. Y.; Barrett, S. C.; Sojoodi, M. et al. Fast detection of liver fibrosis with collagen-binding single-nanometer iron oxide nanoparticles via T1-weighted MRI. Proc. Natl. Acad. Sci. USA 2023, 120, e2220036120.

    CAS  Google Scholar 

  73. Srinivasarao, M.; Low, P. S. Ligand-targeted drug delivery. Chem. Rev. 2017, 117, 12133–12164.

    CAS  Google Scholar 

  74. Zhang, H.; Guo, Y. K.; Jiao, J.; Qiu, Y.; Miao, Y. Q.; He, Y.; Li, Z. L.; Xia, C. C.; Li, L.; Cai, J. et al. A hepatocyte-targeting nanoparticle for enhanced hepatobiliary magnetic resonance imaging. Nat. Biomed. Eng. 2023, 7, 221–235.

    CAS  Google Scholar 

  75. Hu, X.; Li, F. Y.; Wang, S. Y.; Xia, F.; Ling, D. S. Biological stimulus-driven assembly/disassembly of functional nanoparticles for targeted delivery, controlled activation, and bioelimination. Adv. Healthcare Mater. 2018, 7, 1800359.

    Google Scholar 

  76. Zhou, Z. J.; Bai, R. L.; Munasinghe, J.; Shen, Z. Y.; Nie, L. M.; Chen, X. Y. T1–T2 dual-modal magnetic resonance imaging: From molecular basis to contrast agents. ACS Nano 2017, 11, 5227–5232

    CAS  Google Scholar 

  77. Gillis, P.; Moiny, F.; Brooks, R. A. On T2-shortening by strongly magnetized spheres: A partial refocusing model. Magn. Reson. Med. 2002, 47, 257–263.

    Google Scholar 

  78. Wang, L. Y.; Huang, J.; Chen, H. B.; Wu, H.; Xu, Y. L.; Li, Y. C.; Yi, H.; Wang, Y. A.; Yang, L.; Mao, H. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1–T2 switchable magnetic resonance imaging contrast. ACS Nano 2017, 11, 4582–4592.

    CAS  Google Scholar 

  79. Gao, Z. Y.; Hou, Y.; Zeng, J. F.; Chen, L.; Liu, C. Y.; Yang, W. S.; Gao, M. Y. Tumor microenvironment-triggered aggregation of antiphagocytosis 99mTc-labeled Fe3O4 nanoprobes for enhanced tumor imaging in vivo. Adv. Mater. 2017, 29, 1701095.

    Google Scholar 

  80. Bai, C.; Jia, Z. Y.; Song, L. N.; Zhang, W.; Chen, Y.; Zang, F. C.; Ma, M.; Gu, N.; Zhang, Y. Time-dependent T1–T2 switchable magnetic resonance imaging realized by c(RGDyK) modified ultrasmall Fe3O4 anoppobees. Adv. Funct. Mater. 2018, 88, 1802281.

    Google Scholar 

  81. Zhou, H. G.; Guo, M. Y.; Li, J. Y.; Qin, F. L.; Wang, Y. Q.; Liu, T.; Liu, J.; Sabet, Z. F.; Wang, Y. L.; Liu, Y. et al. Hypoxia-triggered self-assembly of ultrasmall iron oxide nanoparticles to amplify the imaging signal of a tumor. J. Am. Chem. Soc. 2021, 143, 1846–1853.

    CAS  Google Scholar 

  82. Xu, X. D.; Zhou, X. X.; Xiao, B.; Xu, H. X.; Hu, D. D.; Qian, Y.; Hu, H. J.; Zhou, Z. X.; Liu, X. R.; Gao, J. Q. et al. Glutathione-esponsive magnetic nanoparticles for highly sensitive diagnosis of liver metastases. Nano Lett. 2021, 21, 2199–2206.

    CAS  Google Scholar 

  83. Zhang, P. S.; Zeng, J. F.; Li, Y. Y.; Yang, C.; Meng, J. L.; Hou, Y.; Gao, M. Y. Quantitative mapping of glutathione within intracranial tumors through interlocked MRI signals of a responsive nanoprobe. Angew. Chem., Int. Ed. 2021, 60, 8130–8138.

    CAS  Google Scholar 

  84. Li, X.; Lu, S. Y.; Xiong, Z. G.; Hu, Y.; Ma, D.; Lou, W. Q.; Peng, C.; Shen, M. W.; Shi, X. Y. Light- addressable nanoclusters of ultrasmall iron oxide nanoparticles for enhanced and dynamic magnetic resonance imaging of arthritis. Adv. Sci. 2019, 6, 1901800.

    CAS  Google Scholar 

  85. Lu, J. X.; Sun, J. H.; Li, F. Y.; Wang, J.; Liu, J. N.; Kim, D.; Fan, C. H.; Hyeon, T.; Ling, D. S. Highly sensitive diagnosis of small hepatocellular carcinoma using pH-responsive iron oxide nanocluster assemblies. J. Am. Chem. Soc. 2018, 140, 10071–10074.

    CAS  Google Scholar 

  86. Li, F. Y.; Liang, Z. Y.; Liu, J. N.; Sun, J. H.; Hu, X.; Zhao, M.; Liu, J. X.; Bai, R. L.; Kim, D.; Sun, X. L. et al. Dynamically reversible iron oxide nanoparticle assemblies for targeted amplification of T1-weighted magnetic resonance imaging of tumors. Nano Lett. 2019, 19, 4213–4220.

    Google Scholar 

  87. Choi, J. S.; Kim, S.; Yoo, D.; Shin, T. H.; Kim, H.; Gomes, M. D.; Kim, S. H.; Pines, A.; Cheon, J. Distance- dependent magnetic resonance tuning as a versatile MRI sensing platform for biological targets. Nat. Mater. 2017, 16, 537–542.

    CAS  Google Scholar 

  88. Wang, C.; Sun, W. B.; Zhang, J.; Zhang, J. P.; Guo, Q. H.; Zhou, X. Y.; Fan, D. D.; Liu, H. R.; Qi, M.; Gao, X. H. et al. An electric-field-responsive paramagnetic contrast agent enhances the visualization of epileptic foci in mouse models of drug-resistant epilepsy. Nat. Biomed. Eng. 2021, 5, 278–289.

    CAS  Google Scholar 

  89. Wang, Z. L.; Xue, X. D.; Lu, H. W.; He, Y. X.; Lu, Z. W.; Chen, Z. J.; Yuan, Y.; Tang, N.; Dreyer, C. A.; Quigley, L. et al. Two-way magnetic resonance tuning and enhanced subtraction imaging for non-invasive and quantitative biological imaging. Nat. Nanotechnol. 2020, 15, 482–490

    Google Scholar 

  90. Du, H.; Wang, Q. Y.; Liang, Z. Y.; Li, Q. L.; Li, F. Y.; Ling, D. S. Fabrication of magnetic nanoprobes for ultrahigh-field magnetic resonance imaging. Nanoscale 2022, 14, 17483–17499.

    CAS  Google Scholar 

  91. Hu, H. L. Recent advances of bioresponsive nano-sized contrast agents for ultra-high-field magnetic resonance imaging. Front. Chem. 2020, 8, 203.

    CAS  Google Scholar 

  92. Wang, J.; Jia, Y. H.; Wang, Q. Y.; Liang, Z. Y.; Han, G. X.; Wang, Z. J.; Lee, J.; Zhao, M.; Li, F. Y.; Bai, R. L. et al. An ultrahigh-field-tailored T1T1–T2T2 dual-mode MRI contrast agent for high-performance vascular imaging. Adv. Mater. 2021, 33, 2004917.

    CAS  Google Scholar 

  93. Helm, L. Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications. Future Med. Chem. 2010, 2, 385–396.

    CAS  Google Scholar 

  94. Shin, T. H.; Kim, P. K.; Kang, S.; Cheong, J.; Kim, S.; Lim, Y.; Shin, W.; Jung, J. Y.; Lah, J. D.; Choi, B. W. et al. High-resolution T1 MRI via renally clearable dextran nanoparticles with an iron oxide shell. Nat. Biomed. Eng. 2021, 5, 252–263.

    CAS  Google Scholar 

  95. Balachandran, Y. L.; Wang, W.; Yang, H. Y.; Tong, H. Y.; Wang, L. L.; Liu, F.; Chen, H. S.; Zhong, K.; Liu, Y.; Jiang, X. Y. Heterogeneous iron oxide/dysprosium oxide nanoparticles target liver for precise magnetic resonance imaging of liver fibrosis. ACS Nano 2022, 16, 5647–5659.

    CAS  Google Scholar 

  96. Laflamme, M. A.; Murry, C. E. Regenerating the heart. Nat. Biotechnol. 2005, 23, 845–856.

    CAS  Google Scholar 

  97. Fox, I. J.; Daley, G. Q.; Goldman, S. A.; Huard, J.; Kamp, T. J.; Trucco, M. Use of differentiated pluripotent stem cells in replacement therapy for treating disease. Science 2014, 345, 1247391.

    Google Scholar 

  98. Wu, M. Y.; Zhang, H. X.; Tie, C. J.; Yan, C. H.; Deng, Z. T.; Wan, Q.; Liu, X.; Yan, F.; Zheng, H. R. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat. Commun. 2018, 9, 4777.

    Google Scholar 

  99. Liu, X. L.; Chen, S. Z.; Zhang, H.; Zhou, J.; Fan, H. M.; Liang, X. J. Magnetic nanomaterials for advanced regenerative medicine: The promise and challenges. Adv. Mater. 2019, 31, 1804922.

    CAS  Google Scholar 

  100. Sheng, J. Y.; Shi, C.; Gu, N. Clinical trials of MRI-based immune cell imaging: Challenges and perspectives. Sci. Bull. 2021, 66, 303–306.

    CAS  Google Scholar 

  101. Bulte, J. W. M.; Kraitchman, D. L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004, 17, 484–499.

    CAS  Google Scholar 

  102. Bulte, J. W. M. In vivo MRI cell tracking: Clinical studies. AJR Am. J. Roentgenol. 2009, 193, 314–325

    Google Scholar 

  103. Zhu, J. H.; Zhou, L. F.; Xingwu, F. G. Tracking neural stem cells in patients with brain trauma. N. Engl. J. Med. 2006, 355, 2376–2378.

    CAS  Google Scholar 

  104. Thu, M. S.; Bryant, L. H.; Coppola, T.; Jordan, E. K.; Budde, M. D.; Lewis, B. K.; Chaudhry, A.; Ren, J. Q.; Varma, N. R. S.; Arbab, A. S. et al. Self- assembling nanocomplexes by combining ferumoxytol, heparin, and protamine for cell tracking by magnetic resonance imaging. Nat. Med. 2012, 18, 463–467.

    CAS  Google Scholar 

  105. Wang, Q. Y.; Ma, X. B.; Liao, H. W.; Liang, Z. Y.; Li, F. Y.; Tian, J.; Ling, D. S. Artificially engineered cubic iron oxide nanoparticle as a high-performance magnetic particle imaging tracer for stem cell tracking. ACS Nano 2020, 14, 2053–2062.

    CAS  Google Scholar 

  106. Yan, S.; Hu, K.; Zhang, M.; Sheng, J. Y.; Xu, X. Q.; Tang, S. J.; Li, Y.; Yang, S.; Si, G. X.; Mao, Y. et al. Extracellular magnetic labeling of biomimetic hydrogel-induced human mesenchymal stem cell spheroids with ferumoxytol for MRI tracking. Bioact. Mater. 2023, 19, 418–428.

    CAS  Google Scholar 

  107. Liu, H. R.; Sun, R.; Wang, L.; Chen, X. Y.; Li, G. L.; Cheng, Y.; Zhai, G. H.; Bay, B. H.; Yang, F.; Gu, N. et al. Biocompatible iron oxide nanoring-labeled mesenchymal stem cells: An innovative magnetothermal approach for cell tracking and targeted stroke therapy. ACS Nano 2022, 16, 18806–18821.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2021YFA1201401 and 2021YFA1201402), the National Natural Science Foundation of China (Nos. 82202306, 82150301, 82072063, and 31901003), the Guangdong Natural Science Foundation (No. 2023A1515012508), and the China Postdoctoral Science Foundation (Nos. 2022M723700 and 2023T160776).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Ming Fan.

Additional information

This work is dedicated to my mentor, Prof. Sishen Xie, an esteemed academician of Chinese Academy of Sciences. His pioneering work in the field of nanoscience and nanotechnology, along with his significant contributions to promoting the development of nanomedicine in China, have left a lasting impact on the scientific community. Professor Xie’s dedication and scientific spirit have served as an inspiration for many young scientists, motivating them to pursue their research with passion and excellence. By honoring his legacy, we will continue to advance the frontiers of nanoscience in the medical field and strive to make remarkable contributions that will ultimately benefit human health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Liu, X.L. & Fan, H.M. Advances in magnetic nanoparticle-based magnetic resonance imaging contrast agents. Nano Res. 16, 12531–12542 (2023). https://doi.org/10.1007/s12274-023-6214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6214-9

Keywords

Navigation