Skip to main content

Iron Oxide Nanoparticle-Based MRI Contrast Agents: Characterization and In Vivo Use

  • Chapter
  • First Online:
Magnetic Characterization Techniques for Nanomaterials

Abstract

Iron oxide nanoparticles are one of the most important materials for magnetic resonance imaging. The possibility of multifunctionalization, lack of toxicity, and variety of compositions make them ideal for many applications. Furthermore, the new generation of nanoparticles for “positive” contrast will increase even more their utility, particularly in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Merbach A, Helm L, Toth E (2013) The chemistry of contrast agents in medical magnetic resonance imaging. Wiley, Hoboken

    Book  Google Scholar 

  2. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110. doi:10.1021/cr068445e

    Article  Google Scholar 

  3. Tartaj P, Morales MP, Gonzalez-Carreño T, Veintemillas-Verdaguer S, Serna CJ (2011) The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv Mater 23:5243–5249

    Article  Google Scholar 

  4. Tartaj P, Morales MP, Veintemillas-verdaguer S, Gonzalez-carreño T, Serna CJ (2006) Synthesis, properties and biomedical applications of magnetic.;16. doi:10.1016/S1567-2719(05)16005-3

  5. Ikeda Y, Nagasaki Y (2011) PEGylation technology in nanomedicine. doi:10.1007/12

    Google Scholar 

  6. Moore A, Weissleder R, Bogdanov A Jr (1997) Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J Magn Reson Imag JMRI 7:1140–1145

    Article  Google Scholar 

  7. Herranz F, del Morales MP, Roca AG, Desco M, Ruiz-Cabello J (2008) A new method for the rapid synthesis of water stable superparamagnetic nanoparticles. Chem – A Eur J 14:9126–9130. doi:10.1002/chem.200800755

    Article  Google Scholar 

  8. Mejías R, Pérez-yagüe S, Gutiérrez L, Cabrera LI, Spada R, Acedo P et al (2011) Biomaterials dimercaptosuccinic acid-coated magnetite nanoparticles for magnetically guided in vivo delivery of interferon gamma for cancer immunotherapy. Biomaterials 32:2938–2952. doi:10.1016/j.biomaterials.2011.01.008

    Article  Google Scholar 

  9. Groult H, Ruiz-Cabello J, Lechuga-Vieco AV, Mateo J, Benito M, Bilbao I et al (2014) Phosphatidylcholine-coated iron oxide nanomicelles for in vivo prolonged circulation time with an antibiofouling protein corona. Chem – A Eur J. doi:10.1002/chem.201404221

  10. Estephan ZG, Schlenoff PS, Schlenoff JB (2011) Zwitteration as an alternative to PEGylation. Langmuir 27:6794–6800. doi:10.1021/la200227b

    Article  Google Scholar 

  11. Bloch F (1946) Nuclear induction. Phys Rev 70:460–474. doi:10.1103/PhysRev.70.460

    Article  Google Scholar 

  12. Purcell E, Torrey H, Pound R (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38. doi:10.1103/PhysRev.69.37

    Article  Google Scholar 

  13. Torrey H (1956) Bloch equations with diffusion terms. Phys Rev 104:563–565. doi:10.1103/PhysRev.104.563

    Article  Google Scholar 

  14. Vuong QL, Berret J-F, Fresnais J, Gossuin Y, Sandre O (2012) A universal scaling law to predict the efficiency of magnetic nanoparticles as MRI T(2)-contrast agents. Adv Healthc Mater 1:502–512. doi:10.1002/adhm.201200078

    Article  Google Scholar 

  15. Collins T (2007) ImageJ for microscopy. Biotechniques 43:S25–S30. doi:10.2144/000112517

    Article  Google Scholar 

  16. Lim J, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8:381. doi:10.1186/1556-276X-8-381

    Article  Google Scholar 

  17. Mejías R, Costo R, Roca AG, Arias CF, Veintemillas-Verdaguer S, González-Carreño T et al (2008) Cytokine adsorption/release on uniform magnetic nanoparticles for localized drug delivery. J Control Release Off J Control Release Soc 130:168–174. doi:10.1016/j.jconrel.2008.05.028

    Article  Google Scholar 

  18. Selim KMK, Ha Y, Kim S, Chang Y, Kim T, Ho G et al (2007) Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. 28:710–716. doi:10.1016/j.biomaterials.2006.09.014

  19. Qu H, Caruntu D, Liu H, O’Connor CJ (2011) Water-dispersible iron oxide magnetic nanoparticles with versatile surface functionalities. Langmuir 27:2271–2278. doi:10.1021/la104471r

    Article  Google Scholar 

  20. Shieh D-B, Cheng F-Y, Su C-H, Yeh C-S, Wu M-T, Wu Y-N et al (2005) Aqueous dispersions of magnetite nanoparticles with NH3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Biomaterials 26:7183–7191. doi:10.1016/j.biomaterials.2005.05.020

    Article  Google Scholar 

  21. Kharisov BI, Dias HVR, Kharissova OV, Vázquez A, Peña Y, Gómez I (2014) Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv 4:45354–45381. doi:10.1039/C4RA06902A

    Article  Google Scholar 

  22. Canfarotta F, Piletsky SA (2014) Engineered magnetic nanoparticles for biomedical applications. Adv Healthc Mater 3:160–175. doi:10.1002/adhm.201300141

    Article  Google Scholar 

  23. Issa B, Obaidat IM, Albiss BA, Haik Y (2013) Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci 14:21266–21305. doi:10.3390/ijms141121266

    Article  Google Scholar 

  24. Tuček P, Tučková M, Fišerová E, Tuček J, Kubáček L (2012) Design of experiment for measurement of Langevin function. Meas Sci Rev 12. doi:10.2478/v10048-012-0019-4

  25. Garcia MA, Fernandez Pinel E, de la Venta J, Quesada A, Bouzas V, Fernández JF et al (2009) Sources of experimental errors in the observation of nanoscale magnetism. J Appl Phys 105:013925. doi:10.1063/1.3060808

    Article  Google Scholar 

  26. Ortega D, Vélez-Fort E, García DA, García R, Litrán R, Barrera-Solano C et al (2010) Size and surface effects in the magnetic properties of maghemite and magnetite coated nanoparticles. Philos Trans A Math Phys Eng Sci 368:4407–4418. doi:10.1098/rsta.2010.0172

    Article  Google Scholar 

  27. Costo R, Bello V, Robic C, Port M, Marco JF, Puerto Morales M et al (2012) Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties. Langmuir 28:178–185. doi:10.1021/la203428z

    Article  Google Scholar 

  28. Garcia-Palacios JL (2009) On the statics and dynamics of magneto-anisotropic nanoparticles. Advances in Chemical Physics, vol. 112 (2000) 1–210

    Google Scholar 

  29. Egli R (2009) Magnetic susceptibility measurements as a function of temperature and frequency I: inversion theory. Geophys J Int 177:395–420. doi:10.1111/j.1365-246X.2009.04081.x

    Article  Google Scholar 

  30. Hansen MF, Jönsson PE, Nordblad P, Svedlindh P (2002) Critical dynamics of an interacting magnetic nanoparticle system. J Phys Condens Matter 14:4901–4914. doi:10.1088/0953-8984/14/19/314

    Article  Google Scholar 

  31. Raikher YL, Stepanov VI (2008) Magnetic relaxation in a suspension of antiferromagnetic nanoparticles. J Exp Theor Phys 107:435–444. doi:10.1134/S1063776108090112

    Article  Google Scholar 

  32. Gutiérrez L, Morales MP, Lázaro FJ (2014) Prospects for magnetic nanoparticles in systemic administration: synthesis and quantitative detection. Phys Chem Chem Phys 16:4456–4464. doi:10.1039/c3cp54763a

    Article  Google Scholar 

  33. Wang G, Inturi S, Serkova NJ, Merkulov S, McCrae K, Russek SE et al (2014) High-relaxivity superparamagnetic iron oxide nanoworms with decreased immune recognition and long-circulating properties. ACS Nano 8:12437–12449. doi:10.1021/nn505126b

    Article  Google Scholar 

  34. Casals E, Pfaller T, Duschl A, Oostingh GJ, Puntes V (2010) Time evolution of the nanoparticle protein corona. ACS Nano 4:3623–3632. doi:10.1021/nn901372t

    Article  Google Scholar 

  35. Barrán-Berdón AL, Pozzi D, Caracciolo G, Capriotti AL, Caruso G, Cavaliere C et al (2013) Time evolution of nanoparticle–protein corona in human plasma: relevance for targeted drug delivery. Langmuir 29:6485–6494. doi:10.1021/la401192x

    Article  Google Scholar 

  36. Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R et al (2013) Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol 8:772–781. doi:10.1038/nnano.2013.181

    Article  Google Scholar 

  37. Herranz F, Morales MP, Roca AG, Vilar R, Ruiz-Cabello J (2008) A new method for the aqueous functionalization of superparamagnetic Fe2O3 nanoparticles. Contrast Media Mol Imaging 3:215–222

    Article  Google Scholar 

  38. Lattuada M, Hatton TA (2007) Functionalization of monodisperse magnetic nanoparticles. Langmuir ACS J Surf Colloids 23:2158–2168. doi:10.1021/la062092x

    Article  Google Scholar 

  39. Gage SH, Stein BD, Nikoshvili LZ, Matveeva VG, Sulman MG, Sulman EM et al (2013) Functionalization of monodisperse iron oxide NPs and their properties as magnetically recoverable catalysts. Langmuir ACS J Surf Colloids 29:466–473. doi:10.1021/la304410z

    Article  Google Scholar 

  40. Quarta A, Curcio A, Kakwere H, Pellegrino T (2012) Polymer coated inorganic nanoparticles: tailoring the nanocrystal surface for designing nanoprobes with biological implications. Nanoscale 4. doi:10.1039/c2nr30271c

  41. Maleki H, Simchi A, Imani M, Costa BFO (2012) Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications. J Magn Magn Mater 324:3997–4005. doi:10.1016/j.jmmm.2012.06.045

    Article  Google Scholar 

  42. Herranz F, Schmidt-Weber CB, Shamji MH, Narkus A, Ruiz-Cabello J, Vilar R (2012) Superparamagnetic iron oxide nanoparticles conjugated to a grass pollen allergen and an optical probe. Contrast Media Mol Imaging 7:435–439. doi:10.1002/cmmi.1466

    Article  Google Scholar 

  43. Rodríguez I, Pérez-Rial S, González-Jimenez J, Pérez-Sánchez J, Herranz F, Beckmann N et al (2008) Magnetic resonance methods and applications in pharmaceutical research. J Pharm Sci 97:3637–3665. doi:10.1002/jps.21281

    Article  Google Scholar 

  44. Roca AG, Veintemillas-Verdaguer S, Port M, Robic C, Serna CJ, Morales MP (2009) Effect of nanoparticle and aggregate size on the relaxometric properties of MR contrast agents based on high quality magnetite nanoparticles. J Phys Chem B 113:7033–7039. doi:10.1021/jp807820s

    Article  Google Scholar 

  45. Mejías R, Pérez-Yagüe S, Roca AG, Pérez N, Villanueva A, Cañete M et al (2010) Liver and brain imaging through dimercaptosuccinic acid-coated iron oxide nanoparticles. Nanomedicine (Lond) 5:397–408. doi:10.2217/nnm.10.15

    Article  Google Scholar 

  46. Zhou H-P, Xu C-H, Sun W, Yan C-H (2009) Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications. Adv Funct Mater 19:3892–3900. doi:10.1002/adfm.200901458

    Article  Google Scholar 

  47. Xia T, Wang J, Wu C, Meng F, Shi Z, Lian J et al (2012) Novel complex-coprecipitation route to form high quality triethanolamine-coated Fe3O4 nanocrystals: their high saturation magnetizations and excellent water treatment properties. CrystEngComm 14:5741. doi:10.1039/c2ce25813g

    Article  Google Scholar 

  48. Korpany KV, Habib F, Murugesu M, Blum AS (2013) Stable water-soluble iron oxide nanoparticles using Tiron. Mater Chem Phys 138:29–37. doi:10.1016/j.matchemphys.2012.10.015

    Article  Google Scholar 

  49. Liang G, Xiao L, Chen H, Liu Q, Zhang S, Li F et al (2013) Label-free, nucleotide-mediated dispersion of magnetic nanoparticles for “non-sandwich type” MRI-based quantification of enzyme. Biosens Bioelectron 41:78–83. doi:10.1016/j.bios.2012.07.025

    Article  Google Scholar 

  50. Hamed A, Fitzgerald AG, Wang LY, Gueorguieva M, Malik R, Melzer A (2013) Characterisation of Mn0 · 7Zn0 · 3Fe2O4 nanoparticles prepared by two stage annealing. Mater Technol 28:339–346. doi:10.1179/1753555713Y.0000000066

    Article  Google Scholar 

  51. Towards MRI T2 contrast agents of increased efficiency. (n.d.) J Magn Magn Mater. doi:10.1010/j.jmmm.2014.10.086

  52. Ruiz-Cabello J, Morales MP, Salinas B, Herranz F (2012) Olefin metathesis for the functionalization of superparamagnetic nanoparticles. Bioinspired, Biomim Nanobiomater 1:166–172. doi:10.1680/bbn.12.00001

    Article  Google Scholar 

  53. Lin YA, Chalker JM, Davis BG (2009) Olefin metathesis for site-selective protein modification. 959–969. doi:10.1002/cbic.200900002

  54. Li M, Song Y, Cho N, Chang JM, Koo HR, Yi A et al (2011) An HR-MAS MR metabolomics study on breast tissues obtained with core needle biopsy. PLoS One 6, e25563. doi:10.1371/journal.pone.0025563

    Article  Google Scholar 

  55. André M, Dumez J-N, Rezig L, Shintu L, Piotto M, Caldarelli S (2014) Complete protocol for slow-spinning high-resolution magic-angle spinning NMR analysis of fragile tissues. Anal Chem 86:10749–10754. doi:10.1021/ac502792u

    Article  Google Scholar 

  56. Das M, Bandyopadhyay D, Mishra D, Datir S, Dhak P, Jain S et al (2011) “Clickable”, trifunctional magnetite nanoparticles and their chemoselective biofunctionalization. Bioconjug Chem 22:1181–1193. doi:10.1021/bc2000484

    Article  Google Scholar 

  57. Polito L, Colombo M, Monti D, Melato S, Caneva E, Prosperi D (2008) Resolving the structure of ligands bound to the surface of superparamagnetic iron oxide nanoparticles by high-resolution magic-angle spinning NMR spectroscopy. J Am Chem Soc 130:12712–12724. doi:10.1021/ja802479n

    Article  Google Scholar 

  58. Groult H, Ruiz-Cabello J, Pellico J, Lechuga-Vieco AV, Bhavesh R, Zamai M et al (2014) Parallel multifunctionalization of nanoparticles: a one-step modular approach for in vivo imaging. Bioconjug Chem(in press). doi:10.1021/bc500536y

  59. Chen H, Liu S, Li Y, Deng C, Zhang X, Yang P (2011) Development of oleic acid-functionalized magnetite nanoparticles as hydrophobic probes for concentrating peptides with MALDI-TOF-MS analysis. Proteomics 11:890–897. doi:10.1002/pmic.201000509

    Article  Google Scholar 

  60. Kim BH, Shin K, Kwon SG, Jang Y, Lee H-S, Lee H et al (2013) Sizing by weighing: characterizing sizes of ultrasmall-sized iron oxide nanocrystals using MALDI-TOF mass spectrometry. J Am Chem Soc 135:2407–2410. doi:10.1021/ja310030c

    Article  Google Scholar 

  61. Chung J, Yu J-S, Kim DJ, Chung J-J, Kim JH, Kim KW (2011) Hypervascular hepatocellular carcinoma in the cirrhotic liver: diffusion-weighted imaging versus superparamagnetic iron oxide-enhanced MRI. Magn Reson Imaging 29:1235–1243. doi:10.1016/j.mri.2011.07.025

    Article  Google Scholar 

  62. Zhao S, Wang Y, Gao C, Zhang J, Bao H, Wang Z et al (2014) Superparamagnetic iron oxide magnetic nanomaterial-labeled bone marrow mesenchymal stem cells for rat liver repair after hepatectomy. J Surg Res 191:290–301. doi:10.1016/j.jss.2014.03.064

    Article  Google Scholar 

  63. Teerasamit W, Saiviroonporn P, Pongpaibul A, Korpraphong P (2014) Benefit of double contrast MRI in diagnosis of hepatocellular carcinoma in patients with chronic liver diseases. J Med Assoc Thai 97:540–547

    Google Scholar 

  64. Zhao J, Vykoukal J, Abdelsalam M, Recio-Boiles A, Huang Q, Qiao Y et al (2014) Stem cell-mediated delivery of SPIO-loaded gold nanoparticles for the theranosis of liver injury and hepatocellular carcinoma. Nanotechnology 25:405101. doi:10.1088/0957-4484/25/40/405101

    Article  Google Scholar 

  65. Groult H, Ruiz-Cabello J, Lechuga-Vieco AV, Mateo J, Benito M, Bilbao I, Martínez-Alcázar MP, Lopez JA, Vázquez J, Herranz FF (2014) Phosphatidylcholine-Coated Iron Oxide Nanomicelles for In Vivo Prolonged Circulation Time with an Antibiofouling Protein Corona. Chem - A Eur J 20:16662–16671

    Article  Google Scholar 

  66. Qi H, Li Z, Du K, Mu K, Zhou Q, Liang S et al (2014) Transferrin-targeted magnetic/fluorescence micelles as a specific bi-functional nanoprobe for imaging liver tumor. Nanoscale Res Lett 9:595. doi:10.1186/1556-276X-9-595

    Article  Google Scholar 

  67. Yang R-M, Fu C-P, Li N-N, Wang L, Xu X-D, Yang D-Y et al (2014) Glycosaminoglycan-targeted iron oxide nanoparticles for magnetic resonance imaging of liver carcinoma. Mater Sci Eng C Mater Biol Appl 45:556–563. doi:10.1016/j.msec.2014.09.038

    Article  Google Scholar 

  68. Yu MK, Kim D, Lee I-H, So J-S, Jeong YY, Jon S (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249. doi:10.1002/smll.201100472

    Article  Google Scholar 

  69. Li Q, Qi H, Zhou H-X, Deng C-Y, Zhu H, Li J-F et al (2011) Detection of micrometastases in peripheral blood of non-small cell lung cancer with a refined immunomagnetic nanoparticle enrichment assay. Int J Nanomedicine 6:2175–2181. doi:10.2147/IJN.S24731

    Article  Google Scholar 

  70. Corem-Salkmon E, Perlstein B, Margel S (2012) Design of near-infrared fluorescent bioactive conjugated functional iron oxide nanoparticles for optical detection of colon cancer. Int J Nanomedicine 7:5517–5527. doi:10.2147/IJN.S33710

    Google Scholar 

  71. Shao H, Chung J, Balaj L, Charest A, Bigner DD, Carter BS et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840. doi:10.1038/nm.2994

    Article  Google Scholar 

  72. Niu C, Wang Z, Lu G, Krupka TM, Sun Y, You Y et al (2013) Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes. Biomaterials 34:2307–2317. doi:10.1016/j.biomaterials.2012.12.003

    Article  Google Scholar 

  73. Shahbazi-Gahrouei D, Abdolahi M (2013) Superparamagnetic iron oxide-C595: potential MR imaging contrast agents for ovarian cancer detection. J Med Phys 38:198–204. doi:10.4103/0971-6203.121198

    Article  Google Scholar 

  74. Lee JY, Kim J-H, Bae KH, Oh MH, Kim Y, Kim JS et al (2014) Low-density lipoprotein-mimicking nanoparticles for tumor-targeted theranostic applications. Small. doi:10.1002/smll.201303277

    Google Scholar 

  75. Tse BW-C, Cowin GJ, Soekmadji C, Jovanovic L, Vasireddy RS, Ling M-T et al (2014) PSMA-targeting iron oxide magnetic nanoparticles enhance MRI of preclinical prostate cancer. Nanomedicine (Lond):1–12. doi:10.2217/nnm.14.122

  76. Groult H, Ruiz-Cabello J, Pellico J, Lechuga-Vieco AV, Bhavesh R, Zamai M et al (2014) Parallel multifunctionalization of nanoparticles: a one-step modular approach for in vivo imaging. Bioconjug Chem. doi:10.1021/bc500536y

    Google Scholar 

  77. Wang L, Zhong X, Qian W, Huang J, Cao Z, Yu Q, Lipowska, M, Lin R, Wang A, Yang L, Mao H (2014) Ultrashort Echo Time (UTE) imaging of receptor targeted magnetic iron oxide nanoparticles in mouse tumor models. J Magn Reson Imaging 40:1071–1081

    Article  Google Scholar 

  78. Briley-Saebo KC, Cho YS, Shaw PX, Ryu SK, Mani V, Dickson S et al (2011) Targeted iron oxide particles for in vivo magnetic resonance detection of atherosclerotic lesions with antibodies directed to oxidation-specific epitopes. J Am Coll Cardiol 57:337–347. doi:10.1016/j.jacc.2010.09.023

    Article  Google Scholar 

  79. Wagner S, Schnorr J, Ludwig A, Stangl V, Ebert M, Hamm B et al (2013) Contrast-enhanced MR imaging of atherosclerosis using citrate-coated superparamagnetic iron oxide nanoparticles: calcifying microvesicles as imaging target for plaque characterization. Int J Nanomedicine 8:767–779. doi:10.2147/IJN.S38702

    Google Scholar 

  80. Wen S, Liu D-F, Cui Y, Harris SS, Chen Y, Li KC et al (2013) In vivo MRI detection of carotid atherosclerotic lesions and kidney inflammation in ApoE-deficient mice by using LOX-1 targeted iron nanoparticles. Nanomed Nanotechnol, Biol Med. doi:10.1016/j.nano.2013.09.009

  81. You DG, Saravanakumar G, Son S, Han HS, Heo R, Kim K et al (2014) Dextran sulfate-coated superparamagnetic iron oxide nanoparticles as a contrast agent for atherosclerosis imaging. Carbohydr Polym 101:1225–1233. doi:10.1016/j.carbpol.2013.10.068

    Article  Google Scholar 

  82. Pellico J, Lechuga-Vieco AV, Benito M, García-Segura JM, Fuster V, Ruiz-Cabello J et al (2014) Microwave-driven synthesis of bisphosphonate nanoparticles allows in vivo visualisation of atherosclerotic plaque. RSC Adv 5:1661–1665. doi:10.1039/C4RA13824D

    Article  Google Scholar 

  83. Le Bihan D, Joly O, Aso T, Uhrig L, Poupon C, Tani N et al (2012) Brain tissue water comes in two pools: evidence from diffusion and R2’ measurements with USPIOs in non human primates. Neuroimage 62:9–16. doi:10.1016/j.neuroimage.2012.05.011

    Article  Google Scholar 

  84. Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ et al (2013) Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells. ACS Chem Neurosci 4:1352–1360. doi:10.1021/cn400093z

    Article  Google Scholar 

  85. Mori Y, Chen T, Fujisawa T, Kobashi S, Ohno K, Yoshida S, Tago Y, Komai Y, Hata Y, Yoshioka Y (2014) From Cartoon to Real Time MRI: In Vivo Monitoring of Phagocyte Migration in Mouse Brain. Sci Rep 4:6997

    Article  Google Scholar 

  86. Gauberti M, Montagne A, Quenault A, Vivien D (2014) Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci 8:389. doi:10.3389/fncel.2014.00389

    Article  Google Scholar 

  87. Sart S, Bejarano FC, Baird MA, Yan Y, Rosenberg JT, Ma T et al (2015) Intracellular labeling of mouse embryonic stem cell-derived neural progenitor aggregates with micron-sized particles of iron oxide. Cytotherapy 17:98–111. doi:10.1016/j.jcyt.2014.09.008

    Article  Google Scholar 

  88. Choi SH, Moon WK (2010) Contrast-enhanced MR imaging of lymph nodes in cancer patients. Korean J Radiol 11:383–394. doi:10.3348/kjr.2010.11.4.383

    Article  Google Scholar 

  89. Weissleder R, Elizondo G, Wittenberg J, Lee AS, Josephson L, Brady TJ (1990) Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology 175:494–498. doi:10.1148/radiology.175.2.2326475

    Article  Google Scholar 

  90. Moghimi S, Bonnemain B (1999) Subcutaneous and intravenous delivery of diagnostic agents to the lymphatic system: applications in lymphoscintigraphy and indirect lymphography. Adv Drug Deliv Rev 37:295–312

    Article  Google Scholar 

  91. Stets C, Brandt S, Wallis F, Buchmann J, Gilbert FJ, Heywang-Köbrunner SH (2002) Axillary lymph node metastases: a statistical analysis of various parameters in MRI with USPIO. J Magn Reson Imaging 16:60–68. doi:10.1002/jmri.10134

    Article  Google Scholar 

  92. Pultrum BB, van der Jagt EJ, van Westreenen HL, van Dullemen HM, Kappert P, Groen H et al (2009) Detection of lymph node metastases with ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging in oesophageal cancer: a feasibility study. Cancer Imaging 9:19–28. doi:10.1102/1470-7330.2009.0004

    Article  Google Scholar 

  93. Anzai Y, Prince MR (n.d.) Iron oxide-enhanced MR lymphography: the evaluation of cervical lymph node metastases in head and neck cancer. J Magn Reson Imaging 7:75–81

    Google Scholar 

  94. Tokuhara T, Tanigawa N, Matsuki M, Nomura E, Mabuchi H, Lee S-W et al (2008) Evaluation of lymph node metastases in gastric cancer using magnetic resonance imaging with ultrasmall superparamagnetic iron oxide (USPIO): diagnostic performance in post-contrast images using new diagnostic criteria. Gastric Cancer 11:194–200. doi:10.1007/s10120-008-0480-9

    Article  Google Scholar 

  95. Yoo R-E, Choi SH, Cho HR, Jeon B-S, Kwon E, Kim E-G et al (2014) Magnetic resonance imaging diagnosis of metastatic lymph nodes in a rabbit model: efficacy of PJY10, a new ultrasmall superparamagnetic iron oxide agent, with monodisperse iron oxide core and multiple-interaction ligands. PLoS One 9, e107583. doi:10.1371/journal.pone.0107583

    Article  Google Scholar 

  96. Mack MG, Balzer JO, Straub R, Eichler K, Vogl TJ (2002) Superparamagnetic iron oxide-enhanced MR imaging of head and neck lymph nodes. Radiology 222:239–244. doi:10.1148/radiol.2221010225

    Article  Google Scholar 

  97. McCauley TR, Rifkin MD, Ledet CA (2002) Pelvic lymph node visualization with MR imaging using local administration of ultra-small superparamagnetic iron oxide contrast. J Magn Reson Imaging 15:492–497

    Article  Google Scholar 

  98. Hudgins PA, Anzai Y, Morris MR, Lucas MA (2002) Ferumoxtran-10, a superparamagnetic iron oxide as a magnetic resonance enhancement agent for imaging lymph nodes: a phase 2 dose study. AJNR Am J Neuroradiol 23:649–656

    Google Scholar 

  99. Sigal R, Vogl T, Casselman J, Moulin G, Veillon F, Hermans R et al (2002) Lymph node metastases from head and neck squamous cell carcinoma: MR imaging with ultrasmall superparamagnetic iron oxide particles (Sinerem MR) – results of a phase-III multicenter clinical trial. Eur Radiol 12:1104–1113. doi:10.1007/s003300101130

    Article  Google Scholar 

  100. Rockall AG, Sohaib SA, Harisinghani MG, Babar SA, Singh N, Jeyarajah AR et al (2005) Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol 23:2813–2821. doi:10.1200/JCO.2005.07.166

    Article  Google Scholar 

  101. Harisinghani MG, Saksena MA, Hahn PF, King B, Kim J, Torabi MT et al (2006) Ferumoxtran-10-enhanced MR lymphangiography: does contrast-enhanced imaging alone suffice for accurate lymph node characterization? AJR Am J Roentgenol 186:144–148. doi:10.2214/AJR.04.1287

    Article  Google Scholar 

  102. Stadnik TW, Everaert H, Makkat S, Sacré R, Lamote J, Bourgain C (2006) Breast imaging. Preoperative breast cancer staging: comparison of USPIO-enhanced MR imaging and 18F-fluorodeoxyglucose (FDC) positron emission tomography (PET) imaging for axillary lymph node staging–initial findings. Eur Radiol 16:2153–2160. doi:10.1007/s00330-006-0276-4

    Article  Google Scholar 

  103. Harisinghani M, Ross RW, Guimaraes AR, Weissleder R (2007) Utility of a new bolus-injectable nanoparticle for clinical cancer staging. Neoplasia 9:1160–1165

    Article  Google Scholar 

  104. Guimaraes AR, Tabatabei S, Dahl D, McDougal WS, Weissleder R, Harisinghani MG (2008) Pilot study evaluating use of lymphotrophic nanoparticle-enhanced magnetic resonance imaging for assessing lymph nodes in renal cell cancer. Urology 71:708–712. doi:10.1016/j.urology.2007.11.096

    Article  Google Scholar 

  105. Heesakkers RAM, Hövels AM, Jager GJ, van den Bosch HCM, Witjes JA, Raat HPJ et al (2008) MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol 9:850–856. doi:10.1016/S1470-2045(08)70203-1

    Article  Google Scholar 

  106. Ross RW, Zietman AL, Xie W, Coen JJ, Dahl DM, Shipley WU et al (n.d.) Lymphotropic nanoparticle-enhanced magnetic resonance imaging (LNMRI) identifies occult lymph node metastases in prostate cancer patients prior to salvage radiation therapy. Clin Imaging 33:301–5. doi:10.1016/j.clinimag.2009.01.013

  107. Kimura K, Tanigawa N, Matsuki M, Nohara T, Iwamoto M, Sumiyoshi K et al (2010) High-resolution MR lymphography using ultrasmall superparamagnetic iron oxide (USPIO) in the evaluation of axillary lymph nodes in patients with early stage breast cancer: preliminary results. Breast Cancer 17:241–246. doi:10.1007/s12282-009-0143-7

    Article  Google Scholar 

  108. Johnson L, Pinder SE, Douek M (2013) Deposition of superparamagnetic iron-oxide nanoparticles in axillary sentinel lymph nodes following subcutaneous injection. Histopathology 62:481–486. doi:10.1111/his.12019

    Article  Google Scholar 

  109. Thill M, Kurylcio A, Welter R, van Haasteren V, Grosse B, Berclaz G et al (2014) The Central-European SentiMag study: sentinel lymph node biopsy with superparamagnetic iron oxide (SPIO) vs. radioisotope. Breast 23:175–179. doi:10.1016/j.breast.2014.01.004

    Article  Google Scholar 

  110. Birkhäuser FD, Studer UE, Froehlich JM, Triantafyllou M, Bains LJ, Petralia G et al (2013) Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging facilitates detection of metastases in normal-sized pelvic lymph nodes of patients with bladder and prostate cancer. Eur Urol 64:953–960. doi:10.1016/j.eururo.2013.07.032

    Article  Google Scholar 

  111. Michel SCA, Keller TM, Fröhlich JM, Fink D, Caduff R, Seifert B et al (2002) Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 225:527–536. doi:10.1148/radiol.2252011605

    Article  Google Scholar 

  112. Anzai Y, Piccoli CW, Outwater EK, Stanford W, Bluemke DA, Nurenberg P et al (2003) Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study. Radiology 228:777–788. doi:10.1148/radiol.2283020872

    Article  Google Scholar 

  113. Heesakkers RAM, Fütterer JJ, Hövels AM, van den Bosch HCM, Scheenen TWJ, Hoogeveen YL et al (2006) Prostate cancer evaluated with ferumoxtran-10-enhanced T2*-weighted MR Imaging at 1.5 and 3.0 T: early experience. Radiology 239:481–487. doi:10.1148/radiol.2392050411

    Article  Google Scholar 

  114. Saksena M, Harisinghani M, Hahn P, Kim J, Saokar A, King B et al (2006) Comparison of lymphotropic nanoparticle-enhanced MRI sequences in patients with various primary cancers. AJR Am J Roentgenol 187:W582–W588. doi:10.2214/AJR.05.0873

    Article  Google Scholar 

  115. Engelen SME, Beets-Tan RGH, Lahaye MJ, Lammering G, Jansen RLH, van Dam RM et al (2010) MRI after chemoradiotherapy of rectal cancer: a useful tool to select patients for local excision. Dis Colon Rectum 53:979–986. doi:10.1007/DCR.0b013e3181dc64dc

    Article  Google Scholar 

  116. Rubio IT, Diaz-Botero S, Esgueva A, Rodriguez R, Cortadellas T, Cordoba O et al (2014) The superparamagnetic iron oxide is equivalent to the Tc99 radiotracer method for identifying the sentinel lymph node in breast cancer. Eur J Surg Oncol. doi:10.1016/j.ejso.2014.11.006

    Google Scholar 

  117. Briley-Saebo KC, Mulder WJM, Mani V, Hyafil F, Amirbekian V, Aguinaldo JGS et al (2007) Magnetic resonance imaging of vulnerable atherosclerotic plaques: current imaging strategies and molecular imaging probes. J Magn Reson Imaging 26:460–479. doi:10.1002/jmri.20989

    Article  Google Scholar 

  118. McAteer MA, Akhtar AM, von Zur Muhlen C, Choudhury RP (2010) An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide. Atherosclerosis 209:18–27. doi:10.1016/j.atherosclerosis.2009.10.009

    Article  Google Scholar 

  119. Ross R (1999) Atherosclerosis–an inflammatory disease. N Engl J Med 340:115–126. doi:10.1056/NEJM199901143400207

    Article  Google Scholar 

  120. Sanz J, Fayad ZA (2008) Imaging of atherosclerotic cardiovascular disease. Nature 451:953–957. doi:10.1038/nature06803

    Article  Google Scholar 

  121. Wildgruber M (2013) Molecular imaging of inflammation in atherosclerosis. Theranostics 3:865–884. doi:10.7150/thno.5771

    Article  Google Scholar 

  122. Corti R, Fuster V (2011) Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J 32:1709–1719b. doi:10.1093/eurheartj/ehr068

    Article  Google Scholar 

  123. Sanz J, Moreno PR, Fuster V (2012) The year in atherothrombosis. J Am Coll Cardiol 60:932–942. doi:10.1016/j.jacc.2012.04.045

    Article  Google Scholar 

  124. Otsuka F, Fuster V, Narula J, Virmani R (2012) Omnipresent atherosclerotic disease: time to depart from analysis of individual vascular beds. Mt Sinai J Med 79:641–653. doi:10.1002/msj.21353

    Article  Google Scholar 

  125. Dutta P, Courties G, Wei Y, Leuschner F, Gorbatov R, Robbins CS et al (2012) Myocardial infarction accelerates atherosclerosis. Nature 487:325–329. doi:10.1038/nature11260

    Article  Google Scholar 

  126. Hermann S, Starsichova A, Waschkau B, Kuhlmann M, Wenning C, Schober O et al (2012) Non-FDG imaging of atherosclerosis: Will imaging of MMPs assess plaque vulnerability? J Nucl Cardiol 19:609–617. doi:10.1007/s12350-012-9553-6

    Article  Google Scholar 

  127. Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M et al (2000) Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 35:460–471

    Article  Google Scholar 

  128. Schmitz SA, Taupitz M, Wagner S, Wolf KJ, Beyersdorff D, Hamm B (2001) Magnetic resonance imaging of atherosclerotic plaques using superparamagnetic iron oxide particles. J Magn Reson Imaging JMRI 14:355–361

    Article  Google Scholar 

  129. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422

    Article  Google Scholar 

  130. Schmitz SA, Taupitz M, Wagner S, Coupland SE, Gust R, Nikolova A et al (2002) Iron-oxide-enhanced magnetic resonance imaging of atherosclerotic plaques: postmortem analysis of accuracy, inter-observer agreement, and pitfalls. Invest Radiol 37:405–411

    Article  Google Scholar 

  131. Kooi ME, Cappendijk VC, Cleutjens KBJM, Kessels AGH, Kitslaar PJEHM, Borgers M et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458. doi:10.1161/01.CIR.0000068315.98705.CC

    Article  Google Scholar 

  132. Schmitz SA, Winterhalter S, Schiffler S, Gust R, Wagner S, Kresse M et al (2001) USPIO-enhanced direct MR imaging of thrombus: preclinical evaluation in rabbits. Radiology 221:237–243. doi:10.1148/radiol.2211001632

    Article  Google Scholar 

  133. Sadeghi MM, Glover DK, Lanza GM, Fayad ZA, Johnson LL (2010) Imaging atherosclerosis and vulnerable plaque. J Nucl Med 51:51S–65S. doi:10.2967/jnumed.109.068163

    Article  Google Scholar 

  134. Sosnovik DE, Nahrendorf M, Weissleder R (2008) Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications. Basic Res Cardiol 103:122–130. doi:10.1007/s00395-008-0710-7

    Article  Google Scholar 

  135. Tang TY, Muller KH, Graves MJ, Li ZY, Walsh SR, Young V et al (2009) Iron oxide particles for atheroma imaging. Arterioscler Thromb Vasc Biol 29:1001–1008. doi:10.1161/ATVBAHA.108.165514

    Article  Google Scholar 

  136. Satomi T, Ogawa M, Mori I, Ishino S, Kubo K, Magata Y et al (2013) Comparison of contrast agents for atherosclerosis imaging using cultured macrophages: FDG versus ultrasmall superparamagnetic iron oxide. J Nucl Med 54:999–1004. doi:10.2967/jnumed.112.110551

    Article  Google Scholar 

  137. Segers FME, den Adel B, Bot I, van der Graaf LM, van der Veer EP, Gonzalez W et al (2013) Scavenger receptor-AI-targeted iron oxide nanoparticles for in vivo MRI detection of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 33:1812–1819. doi:10.1161/ATVBAHA.112.300707

    Article  Google Scholar 

  138. Kelly KA (2005) Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ Res 96:327–336. doi:10.1161/01.RES.0000155722.17881.dd

    Article  Google Scholar 

  139. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P et al (2006) Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114:1504–1511. doi:10.1161/CIRCULATIONAHA.106.646380

    Article  Google Scholar 

  140. Woollard KJ, Chin-Dusting J (2007) Therapeutic targeting of p-selectin in atherosclerosis. Inflamm Allergy Drug Targets 6:69–74

    Article  Google Scholar 

  141. Jacobin-Valat M-J, Deramchia K, Mornet S, Hagemeyer CE, Bonetto S, Robert R et al (2011) MRI of inducible P-selectin expression in human activated platelets involved in the early stages of atherosclerosis. NMR Biomed 24:413–424. doi:10.1002/nbm.1606

    Google Scholar 

  142. Smith BR, Heverhagen J, Knopp M, Schmalbrock P, Shapiro J, Shiomi M et al (2007) Localization to atherosclerotic plaque and biodistribution of biochemically derivatized superparamagnetic iron oxide nanoparticles (SPIONs) contrast particles for magnetic resonance imaging (MRI). Biomed Microdevices 9:719–727. doi:10.1007/s10544-007-9081-3

    Article  Google Scholar 

  143. Pellico J, Lechuga-Vieco AV, Benito M, García-Segura JM, Fuster V, Ruiz-Cabello J et al (2015) Microwave-driven synthesis of bisphosphonate nanoparticles allows in vivo visualisation of atherosclerotic plaque. RSC Adv 5:1661–1665. doi:10.1039/C4RA13824D

    Article  Google Scholar 

  144. Ahlström KH, Johansson LO, Rodenburg JB, Ragnarsson AS, Akeson P, Börseth A (1999) Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology 211:865–869. doi:10.1148/radiology.211.3.r99jn10865

    Article  Google Scholar 

  145. Sigovan M, Boussel L, Sulaiman A, Sappey-Marinier D, Alsaid H, Desbleds-Mansard C et al (2009) Rapid-clearance iron nanoparticles for inflammation imaging of atherosclerotic plaque: initial experience in animal model. Radiology 252:401–409. doi:10.1148/radiol.2522081484

    Article  Google Scholar 

  146. Schnorr J, Taupitz M, Schellenberger EA, Warmuth C, Fahlenkamp UL, Wagner S et al (2012) Cardiac magnetic resonance angiography using blood-pool contrast agents: comparison of citrate-coated very small superparamagnetic iron oxide particles with gadofosveset trisodium in pigs. Rofo 184:105–112. doi:10.1055/s-0031-1281982

    Article  Google Scholar 

  147. Wagner M, Wagner S, Schnorr J, Schellenberger E, Kivelitz D, Krug L et al (2011) Coronary MR angiography using citrate-coated very small superparamagnetic iron oxide particles as blood-pool contrast agent: initial experience in humans. J Magn Reson Imaging 34:816–823. doi:10.1002/jmri.22683

    Article  Google Scholar 

  148. Tanimoto A, Yuasa Y, Hiramatsu K (n.d.) Enhancement of phase-contrast MR angiography with superparamagnetic iron oxide. J Magn Reson Imaging;8:446–450

    Google Scholar 

  149. Schmitz SA, Albrecht T, Wolf KJ (1999) MR angiography with superparamagnetic iron oxide: feasibility study. Radiology 213:603–607. doi:10.1148/radiology.213.2.r99oc24603

    Article  Google Scholar 

  150. Kim BH, Lee N, Kim H, An K, Park YI, Choi Y et al (2011) Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T 1 magnetic resonance imaging contrast agents. J Am Chem Soc 133:12624–12631. doi:10.1021/ja203340u

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Herranz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herranz, F., Morales, M.P., Rodríguez, I., Ruiz-Cabello, J. (2017). Iron Oxide Nanoparticle-Based MRI Contrast Agents: Characterization and In Vivo Use. In: Kumar, C. (eds) Magnetic Characterization Techniques for Nanomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52780-1_3

Download citation

Publish with us

Policies and ethics