Skip to main content
Log in

Carbon-based functional materials for atmospheric water utilization

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Atmospheric water, as one of the most abundant natural resources on Earth, has attracted huge research interest in the field of water harvesting and energy harvesting and conversion owing its environmental friendliness and easy access. The developments of new materials have seen advanced technologies that can extract water and energy out of this long-neglected resource, suggesting a promising and sustainable approach to address the water and energy crises over the world. Carbon-based functional materials have been considered to be indispensable materials for atmospheric water utilization due to their large surface area, excellent adsorption performance, and higher surface activity. In this review, first, we analyze the interaction between carbon-based functional materials and atmospheric water molecular. Then, technologies developed in recent years for atmospheric water utilization based on carbon-based functional materials are reviewed, mainly focusing on atmospheric water harvesting, moisture-enabled electricity generation, and moisture-responsive actuation. Finally, the remaining challenges and some tentative suggestions possibly guiding developments are proposed, which may pave a way for a bright future of carbon-based functional material in the utilization of atmospheric water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stephens, G. L., Li, J., Wild, M., Clayson, C. A., Loeb, N., Kato, S., L’Ecuyer, T., Stackhouse, P. W., Lebsock, M., Andrews, T. An update on Earth’s energy balance in light of the latest global observations. Nat. Geosci. 2012, 5, 691–696.

    CAS  Google Scholar 

  2. Vörösmarty, C. J., Mcintyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R. et al. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561.

    Google Scholar 

  3. Rockström, J., Mazzucato, M., Andersen, L. S., Fahrländer, S. F.; Gerten, D. Why we need a new economics of water as a common good. Nature 2023, 615, 794–797.

    Google Scholar 

  4. Chu, S., Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  5. Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., Lo, M. H. Emerging trends in global freshwater availability. Nature 2018, 557, 651–659.

    CAS  Google Scholar 

  6. Cooley, S. W., Ryan, J. C., Smith, L. C. Human alteration of global surface water storage variability. Nature 2021, 591, 78–81.

    CAS  Google Scholar 

  7. Yin, J., Zhou, J. X., Fang, S. M., Guo, W. L. Hydrovoltaic energy on the way. Joule 2020, 4, 1852–1855.

    Google Scholar 

  8. Lu, W. H., Ong, W. L., Ho, G. W. Advances in harvesting water and energy from ubiquitous atmospheric moisture. J. Mater. Chem. A 2023, 11, 12456–12481.

    CAS  Google Scholar 

  9. Wei, Q. M., Ge, W. N., Yuan, Z. C., Wang, S. X., Lu, C. G., Feng, S. L., Zhao, L., Liu, Y. H. Moisture electricity generation: Mechanisms, structures, and applications. Nano Res. 2023, 16, 7496–7510.

    Google Scholar 

  10. Wang, K. Q., Xu, W. H., Zhang, W., Wang, X., Yang, X., Li, J. F., Zhang, H. L., Li, J. J., Wang, Z. K. Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2023, 2, e9120042.

    Google Scholar 

  11. Han, Y. Y., Zhang, Z. P., Qu, L. T. Power generation from graphene-water interactions. FlatChem 2019, 14, 100090.

    CAS  Google Scholar 

  12. Bai, J. X., Huang, Y. X., Cheng, H. H., Qu, L. T. Moist-electric generation. Nanoscale 2019, 11, 23083–23091.

    CAS  Google Scholar 

  13. Wang, H. Y., Sun, Y. L., He, T. C., Huang, Y. X., Cheng, H. H., Li, C., Xie, D., Yang, P. F., Zhang, Y. F., Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

    CAS  Google Scholar 

  14. Sun, Z. Y., Wen, X., Wang, L. M., Ji, D. X., Qin, X. H., Yu, J. Y., Ramakrishna, S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32–46.

    Google Scholar 

  15. Niklewski, J., Brischke, C., Hansson, E. F., Meyer-Veltrup, L. Moisture behavior of weathered wood surfaces during cyclic wetting: Measurements and modeling. Wood Sci. Technol. 2018, 52, 1431–1450.

    CAS  Google Scholar 

  16. Joffre, T., Isaksson, P., Dumont, P. J. J., Du Roscoat, S. R.; Sticko, S.; Orgéas, L., Gamstedt, E. K. A method to measure moisture induced swelling properties of a single wood cell. Exp. Mech. 2016, 56, 723–733.

    Google Scholar 

  17. Brennan, J. K., Bandosz, T. J., Thomson, K. T., Gubbins, K. E. Water in porous carbons. Colloids Surf. A: Physicochem. Eng. Asp. 2001, 187-188, 539–568.

    CAS  Google Scholar 

  18. Zhang, Q., Xu, W. L.; Wang, X. B. Carbon nanocomposites with high photothermal conversion efficiency. Sci. China Mater. 2018, 61, 905–914.

    CAS  Google Scholar 

  19. Burghaus, U. Adsorption of water on epitaxial graphene. J. Mater. Res. 2021, 36, 129–139.

    CAS  Google Scholar 

  20. Wang, C. Y.; Xing, Y. W.; Lei, Y. Z.; Xia, Y. C.; Zhang, C. H.; Zhang, R.; Wang, S. W.; Chen, P.; Zhu, S.; Li, J. H. et al. Adsorption of water on carbon materials: The formation of “water bridge” and its effect on water adsorption. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 631, 127719.

    CAS  Google Scholar 

  21. Yan, H. L.; Wu, F.; Xue, Y. F.; Bryan, K.; Ma, W. J.; Yu, P.; Mao, L. Q. Water adsorption and transport on oxidized two-dimensional carbon materials. Chem.-Eur. J. 2019, 25, 3969–3978.

    CAS  Google Scholar 

  22. Wang, X.; Kalali, E. N.; Wan, J. T.; Wang, D. Y. Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 2017, 69, 22–46.

    CAS  Google Scholar 

  23. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Sci. Adv. 2004, 306, 666–669.

    CAS  Google Scholar 

  24. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    CAS  Google Scholar 

  25. Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924.

    CAS  Google Scholar 

  26. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    CAS  Google Scholar 

  27. Zhang, M.; Yuan, J. Y. Graphene meta-aerogels: When sculpture aesthetic meets 1D/2D composite materials. Nano Res. Energy 2022, 1, e9120035.

    Google Scholar 

  28. Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

    CAS  Google Scholar 

  29. Dalton, A. B.; Collins, S.; Muñoz, E.; Razal, J. M.; Ebron, V. H.; Ferraris, J. P.; Coleman, J. N.; Kim, B. G.; Baughman, R. H. Supertough carbon-nanotube fibres. Nature 2003, 423, 703.

    CAS  Google Scholar 

  30. Behabtu, N.; Young, C. C.; Tsentalovich, D. E.; Kleinerman, O.; Wang, X.; Ma, A. W. K.; Bengio, E. A.; Ter Waarbeek, R. F.; De Jong, J. J.; Hoogerwerf, R. E. et al. Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 2013, 339, 182–186.

    CAS  Google Scholar 

  31. Qian, Q. R.; Sunohara, S.; Kato, Y.; Zaini, M. A. A.; Machida, M.; Tatsumoto, H. Water vapor adsorption onto activated carbons prepared from cattle manure compost (CMC). Appl. Surf. Sci. 2008, 254, 4868–4874.

    CAS  Google Scholar 

  32. Sun, S. N.; Yu, Q. F.; Li, M.; Zhao, H.; Wang, Y. F.; Zhang, Y. Surface modification of porous carbon nanomaterials for water vapor adsorption. ACS Appl. Nano Mater. 2023, 6, 2822–2834.

    CAS  Google Scholar 

  33. Zhang, D. Z.; Pan, W. J.; Tang, M. C.; Wang, D. Y.; Yu, S. J.; Mi, Q.; Pan, Q. N.; Hu, Y. Q. Diversiform gas sensors based on two-dimensional nanomaterials. Nano Res., in press, https://doi.org/10.1007/s12274-022-5233-2.

  34. Liu, X.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

    CAS  Google Scholar 

  35. Ding, X. T.; Niu, Y. S.; Zhang, G.; Xu, Y. H.; Li, J. H. Electrochemistry in carbon-based quantum dots. Chem. Asian J. 2020, 15, 1214–1224.

    CAS  Google Scholar 

  36. Chen, S.; Chen, Q. W.; Ding, S. Y.; Tian, Y. D.; Wang, J.; Hou, S. Q.; Zhang, J. T. Rational design of carbon-based electrocatalysts for enhancing redox reactions in rechargeable metal batteries. Nano Res. 2023, 16, 4246–4276.

    Google Scholar 

  37. Lan, G. J.; Yang, J.; Ye, R. P.; Boyjoo, Y.; Liang, J.; Liu, X. Y.; Li, Y.; Liu, J.; Qian, K. Sustainable carbon materials toward emerging applications. Small Methods 2021, 5, 2001250.

    CAS  Google Scholar 

  38. Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for fischer-tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

    CAS  Google Scholar 

  39. Zhang, H. M.; Liu, W. H.; Cao, D.; Cheng, D. J. Carbon-based material-supported single-atom catalysts for energy conversion. iScience 2022, 25, 104367.

    CAS  Google Scholar 

  40. Shang, H. S.; Liu, D. Atomic design of carbon-based dual-metal site catalysts for energy applications. Nano Res. 2023, 16, 6477–6506.

    CAS  Google Scholar 

  41. Ma, Q. L.; Yu, Y. F.; Sindoro, M.; Fane, A. G.; Wang, R.; Zhang, H. Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. 2017, 29, 1605361.

    Google Scholar 

  42. Ibrahim, H.; Sazali, N.; Salleh, W. N. W.; Ngadiman, N. H. A.; Fadil, N. A.; Harun, Z. Outlook on the carbon-based materials for heavy metal removal. Biointerface Res. Appl. Chem. 2021, 12, 5303–5323.

    Google Scholar 

  43. Abbo, H. S.; Gupta, K. C.; Khaligh, N. G.; Titinchi, S. J. J. Carbon nanomaterials for wastewater treatment. ChemBioEng Rev. 2021, 8, 463–489.

    CAS  Google Scholar 

  44. Hu, Y. J.; Yao, H. Z.; Liao, Q. H.; Lin, T. Y.; Cheng, H. H.; Qu, L. T. The promising solar-powered water purification based on graphene functional architectures. EcoMat 2022, 4, e12205.

    CAS  Google Scholar 

  45. Teradal, N. L.; Jelinek, R. Carbon nanomaterials in biological studies and biomedicine. Adv. Healthc. Mater. 2017, 6, 1700574.

    Google Scholar 

  46. Wang, J.; Xin, H. L.; Wang, D. L. Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 2014, 31, 515–539.

    CAS  Google Scholar 

  47. Zhong, X. W.; Wu, Y.; Zeng, S. F.; Yu, Y. Carbon and carbon hybrid materials as anodes for sodium-ion batteries. Chem. Asian J. 2018, 13, 1248–1265.

    CAS  Google Scholar 

  48. Zhang, L. L.; Wang, Y. J.; Niu, Z. Q.; Chen, J. Advanced nanostructured carbon-based materials for rechargeable lithium-sulfur batteries. Carbon 2019, 141, 400–416.

    CAS  Google Scholar 

  49. Zhang, Y. C.; Zhang, Q. C.; Chen, G. M. Carbon and carbon composites for thermoelectric applications. Carbon Energy 2020, 2, 408–436.

    CAS  Google Scholar 

  50. Wang, Z. T.; Zhang, M. Q.; Ma, W. T.; Zhu, J. B.; Song, W. X. Application of carbon materials in aqueous zinc ion energy storage devices. Small 2021, 17, 2100219.

    CAS  Google Scholar 

  51. Gao, X. Y.; Li, J. F.; Zuo, Z. C. Advanced electrochemical energy storage and conversion on graphdiyne interface. Nano Res. Energy 2022, 1, e9120036.

    Google Scholar 

  52. Wang, P. F.; Dai, X.; Xu, P.; Hu, S. J.; Xiong, X. Y.; Zou, K. Y.; Guo, S. W.; Sun, J. J.; Zhang, C. F.; Liu, Y. N. et al. Hierarchical and lamellar porous carbon as interconnected sulfur host and polysulfide-proof interlayer for Li-S batteries. eScience 2023, 3, 100088.

    Google Scholar 

  53. Zheng, Y. T.; Wei, J. J.; Liu, J. L.; Chen, L. X.; An, K.; Zhang, X. T.; Ye, H. T.; Ouyang, X. P.; Li, C. M. Carbon materials: The burgeoning promise in electronics. Int. J. Miner. Metall Mater. 2022, 29, 404–423.

    Google Scholar 

  54. Cai, X.; Wang, S.; Peng, L. M. Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration. Nano Res. Energy 2023, 2, e9120058.

    Google Scholar 

  55. Rodriguez-Reinoso, F.; Molina-Sabio, M.; Muñecas, M. A. Effect of microporosity and oxygen surface groups of activated carbon in the adsorption of molecules of different polarity. J. Phys. Chem. 1992, 96, 2707–2713.

    CAS  Google Scholar 

  56. Picaud, S.; Collignon, B.; Hoang, P. N. M.; Rayez, J. C. Adsorption of water molecules on partially oxidized graphite surfaces: A molecular dynamics study of the competition between OH and COOH sites. Phys. Chem. Chem. Phys. 2008, 10, 6998–7009.

    CAS  Google Scholar 

  57. Miura, K.; Morimoto, T. Adsorption sites for water on graphite. 6. Effect of ozone treatment of sample. Langmuir 1994, 10, 807–811.

    CAS  Google Scholar 

  58. Fletcher, A. J.; Uygur, Y.; Thomas, K. M. Role of surface functional groups in the adsorption kinetics of water vapor on microporous activated carbons. J. Phys. Chem. C 2007, 111, 8349–8359.

    CAS  Google Scholar 

  59. Nguyen, V. T.; Horikawa, T.; Do, D. D.; Nicholson, D. Water as a potential molecular probe for functional groups on carbon surfaces. Carbon 2014, 67, 72–78.

    CAS  Google Scholar 

  60. Klomkliang, N.; Kaewmanee, R.; Saimoey, S.; Intarayothya, S.; Do, D. D.; Nicholson, D. Adsorption of water and methanol on highly graphitized thermal carbon black: The effects of functional group and temperature on the isosteric heat at low loadings. Carbon 2016, 99, 361–369.

    CAS  Google Scholar 

  61. Zeng, Y. H.; Prasetyo, L.; Nguyen, V. T.; Horikawa, T.; Do, D. D.; Nicholson, D. Characterization of oxygen functional groups on carbon surfaces with water and methanol adsorption. Carbon 2015, 81, 447–457.

    CAS  Google Scholar 

  62. Liu, L. M.; Tan, S. J.; Horikawa, T.; Do, D. D.; Nicholson, D.; Liu, J. J. Water adsorption on carbon-A review. Adv. Colloid Interface Sci. 2017, 250, 64–78.

    CAS  Google Scholar 

  63. Ohta, N.; Nishi, Y.; Morishita, T.; Ieko, Y.; Ito, A.; Inagaki, M. Preparation of microporous carbon foams for adsorption/desorption of water vapor in ambient air. New Carbon Mater. 2008, 23, 216–220.

    CAS  Google Scholar 

  64. Striolo, A.; Chialvo, A. A.; Cummings, P. T.; Gubbins, K. E. Water adsorption in carbon-slit nanopores. Langmuir 2003, 19, 8583–8591.

    CAS  Google Scholar 

  65. Horikawa, T.; Muguruma, T.; Do, D. D.; Sotowa, K. I.; Alcántara-Avila, J. R. Scanning curves of water adsorption on graphitized thermal carbon black and ordered mesoporous carbon. Carbon 2015, 95, 137–143.

    CAS  Google Scholar 

  66. Liu, L. M.; Zeng, Y. H.; Tan, S. J.; Xu, H.; Do, D. D.; Nicholson, D.; Liu, J. J. On the mechanism of water adsorption in carbon micropores-A molecular simulation study. Chem. Eng. J. 2019, 357, 358–366.

    CAS  Google Scholar 

  67. LaPotin, A.; Kim, H.; Rao, S. R.; Wang, E. N. Adsorption-based atmospheric water harvesting: Impact of material and component properties on system-level performance. Acc. Chem. Res. 2019, 52, 1588–1597.

    CAS  Google Scholar 

  68. Zhou, X. Y.; Lu, H. Y.; Zhao, F.; Yu, G. H. Atmospheric water harvesting: A review of material and structural designs. ACS Mater. Lett. 2020, 2, 671–684.

    CAS  Google Scholar 

  69. Lu, H. Y.; Shi, W.; Guo, Y. H.; Guan, W. X.; Lei, C. X.; Yu, G. H. Materials engineering for atmospheric water harvesting: Progress and perspectives. Adv. Mater. 2022, 34, 2110079.

    CAS  Google Scholar 

  70. Shi, W.; Guan, W. X.; Lei, C. X.; Yu, G. H. Sorbents for atmospheric water harvesting: From design principles to applications. Angew. Chem., Int. Ed. 2022, 61, e202211267.

    CAS  Google Scholar 

  71. Lian, B.; De Luca, S.; You, Y.; Alwarappan, S.; Yoshimura, M.; Sahajwalla, V.; Smith, S. C.; Leslie, G.; Joshi, R. K. Extraordinary water adsorption characteristics of graphene oxide. Chem. Sci. 2018, 9, 5106–5111.

    CAS  Google Scholar 

  72. Yang, K. J.; Pan, T. T.; Pinnau, I.; Shi, Z.; Han, Y. Simultaneous generation of atmospheric water and electricity using a hygroscopic aerogel with fast sorption kinetics. Nano Energy 2020, 78, 105326.

    CAS  Google Scholar 

  73. Anjali, C.; Renuka, N. K. Atmospheric water harvesting: Prospectus on graphene-based materials. J. Mater. Res. 2022, 37, 2227–2240.

    CAS  Google Scholar 

  74. Huang, Y. W.; Yu, Q. F.; Li, M.; Jin, S. X.; Fan, J.; Zhao, L.; Yao, Z. H. Surface modification of activated carbon fiber by low-temperature oxygen plasma: Textural property, surface chemistry, and the effect of water vapor adsorption. Chem. Eng. J. 2021, 418, 129474.

    CAS  Google Scholar 

  75. Xiao, J.; Liu, Z. L.; Kim, K.; Chen, Y. S.; Yan, J.; Li, Z.; Wang, W. L. S/O-functionalities on modified carbon materials governing adsorption of water vapor. J. Phys. Chem. C 2013, 117, 23057–23065.

    CAS  Google Scholar 

  76. Li, R. Y.; Shi, Y.; Alsaedi, M.; Wu, M. C.; Shi, L.; Wang, P. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ. Sci. Technol. 2018, 52, 11367–11377.

    CAS  Google Scholar 

  77. Li, R. Y.; Shi, Y.; Shi, L.; Alsaedi, M.; Wang, P. Harvesting water from air: Using anhydrous salt with sunlight. Environ. Sci. Technol. 2018, 52, 5398–5406.

    CAS  Google Scholar 

  78. Chen, B.; Zhao, X.; Yang, Y. Superelastic graphene nanocomposite for high cycle-stability water capture-release under sunlight. ACS Appl. Mater. Interfaces 2019, 11, 15616–15622.

    CAS  Google Scholar 

  79. Wang, X. Y.; Li, X. Q.; Liu, G. L.; Li, J. L.; Hu, X. Z.; Xu, N.; Zhao, W.; Zhu, B.; Zhu, J. An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angew. Chem., Int. Ed. 2019, 58, 12054–12058.

    CAS  Google Scholar 

  80. Hou, Y. L.; Sheng, Z. Z.; Fu, C.; Kong, J.; Zhang, X. T. Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 2022, 13, 1227.

    CAS  Google Scholar 

  81. Hu, Y.; Fang, Z.; Wan, X. Y.; Ma, X.; Wang, S. L.; Fan, S. K.; Dong, M. Y.; Ye, Z. Z.; Peng, X. S. Carbon nanotubes decorated hollow metal-organic frameworks for efficient solar-driven atmospheric water harvesting. Chem. Eng. J. 2022, 430, 133086.

    CAS  Google Scholar 

  82. Song, Y.; Xu, N.; Liu, G. L.; Qi, H. S.; Zhao, W.; Zhu, B.; Zhou, L.; Zhu, J. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels. Nat. Nanotechnol. 2022, 17, 857–863.

    CAS  Google Scholar 

  83. Ishii, A.; Machiya, H.; Kato, Y. K. High efficiency dark-to-bright exciton conversion in carbon nanotubes. Phys. Rev. X 2019, 9, 041048.

    CAS  Google Scholar 

  84. Liu, H. C.; Huang, G. C.; Wang, R.; Huang, L.; Wang, H. Z.; Hu, Y. Z.; Cong, G. T.; Bao, F.; Xu, M.; Zhu, C. Z. et al. Carbon nanotubes grown on the carbon fibers to enhance the photothermal conversion toward solar-driven applications. ACS Appl. Mater. Interfaces 2022, 14, 32404–32411.

    CAS  Google Scholar 

  85. Yao, H. Z.; Zhang, P. P.; Huang, Y. X.; Cheng, H. H.; Li, C.; Qu, L. T. Highly efficient clean water production from contaminated air with a wide humidity range. Adv. Mater. 2020, 32, 1905875.

    CAS  Google Scholar 

  86. Xu, J. X.; Li, T. X.; Yan, T. S.; Wu, S.; Wu, M. Q.; Chao, J. W.; Huo, X. Y.; Wang, P. F.; Wang, R. Z. Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ. Sci. 2021, 14, 5979–5994.

    CAS  Google Scholar 

  87. Zhang, Y. X.; Nandakumar, D. K.; Tan, S. C. Digestion of ambient humidity for energy generation. Joule 2020, 4, 2532–2536.

    Google Scholar 

  88. Guan, P. Y.; Zhu, R. B.; Hu, G. Y.; Patterson, R.; Chen, F. D.; Liu, C.; Zhang, S.; Feng, Z. H.; Jiang, Y.; Wan, T. et al. Recent development of moisture-enabled-electric nanogenerators. Small 2022, 18, 2204603.

    CAS  Google Scholar 

  89. Wang, P. F.; Xu, J. X.; Wang, R. Z.; Li, T. X. Pathways for continuous electricity generation from ambient moisture. Matter 2023, 6, 19–22.

    Google Scholar 

  90. Li, M. J.; Zong, L.; Yang, W. Q.; Li, X. K.; You, J.; Wu, X. C.; Li, Z. H.; Li, C. X. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 2019, 29, 1901798.

    Google Scholar 

  91. Shen, D. Z.; Xiao, M.; Zou, G. S.; Liu, L.; Duley, W. W.; Zhou, Y. N. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 2018, 30, 1705925.

    Google Scholar 

  92. Tan, J.; Fang, S. M.; Zhang, Z. H.; Yin, J.; Li, L. X.; Wang, X.; Guo, W. L. Self-sustained electricity generator driven by the compatible integration of ambient moisture adsorption and evaporation. Nat. Commun. 2022, 13, 3643.

    CAS  Google Scholar 

  93. Zhao, F.; Cheng, H. H.; Zhang, Z. P.; Jiang, L.; Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 2015, 27, 4351–4357.

    CAS  Google Scholar 

  94. Huang, Y. X.; Cheng, H. H.; Shi, G. Q.; Qu, L. T. Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl. Mater. Interfaces 2017, 9, 38170–38175.

    CAS  Google Scholar 

  95. Li, Q. J.; Zhou, M.; Yang, Q. F.; Yang, M. Y.; Wu, Q.; Zhang, Z. X.; Yu, J. W. Flexible carbon dots composite paper for electricity generation from water vapor absorption. J. Mater. Chem. A 2018, 6, 10639–10643.

    CAS  Google Scholar 

  96. Liang, Y.; Zhao, F.; Cheng, Z. H.; Zhou, Q. H.; Shao, H. B.; Jiang, L.; Qu, L. T. Self-powered wearable graphene fiber for information expression. Nano Energy 2017, 32, 329–335.

    CAS  Google Scholar 

  97. Zhao, F.; Wang, L. X.; Zhao, Y.; Qu, L. T.; Dai, L. M. Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 2017, 29, 1604972.

    Google Scholar 

  98. Shao, C. X.; Gao, J.; Xu, T.; Ji, B. X.; Xiao, Y. K.; Gao, C.; Zhao, Y.; Qu, L. T. Wearable fiberform hygroelectric generator. Nano Energy 2018, 53, 698–705.

    CAS  Google Scholar 

  99. Sun, Z. Y.; Feng, L. L.; Xiong, C. D.; He, X. Y.; Wang, L. M.; Qin, X. H.; Yu, J. Y. Electrospun nanofiber fabric: An efficient, breathable and wearable moist-electric generator. J. Mater. Chem. A 2021, 9, 7085–7093.

    CAS  Google Scholar 

  100. He, W. Y.; Wang, H. Y.; Huang, Y. X.; He, T. C.; Chi, F. Y.; Cheng, H. H.; Liu, D.; Dai, L. M.; Qu, L. T. Textile-based moisture power generator with dual asymmetric structure and high flexibility for wearable applications. Nano Energy 2022, 95, 107017.

    CAS  Google Scholar 

  101. Hu, K. S.; Xiong, R.; Guo, H. Y.; Ma, R. L.; Zhang, S. D.; Wang, Z. L.; Tsukruk, V. V. Self-powered electronic skin with biotactile selectivity. Adv. Mater. 2016, 28, 3549–3556.

    CAS  Google Scholar 

  102. Liu, K.; Yang, P. H.; Li, S.; Li, J.; Ding, T. P.; Xue, G. B.; Chen, Q.; Feng, G.; Zhou, J. Induced potential in porous carbon films through water vapor absorption. Angew. Chem., Int. Ed. 2016, 55, 8003–8007.

    CAS  Google Scholar 

  103. Cheng, H. H.; Huang, Y. X.; Qu, L. T.; Cheng, Q. L.; Shi, G. Q.; Jiang, L. Flexible in-plane graphene oxide moisture-electric converter for touchless interactive panel. Nano Energy 2018, 45, 37–43.

    CAS  Google Scholar 

  104. Xu, T.; Ding, X. T.; Shao, C. X.; Song, L.; Lin, T. Y.; Gao, X.; Xue, J. L.; Zhang, Z. P.; Qu, L. T. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 2018, 14, 1704473.

    Google Scholar 

  105. Lee, S.; Jang, H.; Lee, H.; Yoon, D.; Jeon, S. Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 2019, 11, 26970–26975.

    CAS  Google Scholar 

  106. Liang, Y.; Zhao, F.; Cheng, Z. H.; Deng, Y. X.; Xiao, Y. K.; Cheng, H. H.; Zhang, P. P.; Huang, Y. X.; Shao, H. B.; Qu, L. T. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energ. Environ. Sci. 2018, 11, 1730–1735.

    CAS  Google Scholar 

  107. Luo, Z. L.; Liu, C. H.; Fan, S. S. A moisture induced self-charging device for energy harvesting and storage. Nano Energy 2019, 60, 371–376.

    CAS  Google Scholar 

  108. Yang, C.; Huang, Y. X.; Cheng, H. H.; Jiang, L.; Qu, L. T. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 2019, 31, 1805705.

    Google Scholar 

  109. Zhang, B. X.; Wang, K. X.; Ji, X.; Wang, S. Y.; Ma, Z.; Qiu, Y. F. A self-powered moisture detector using graphene oxide film constructed by asymmetric metal electrodes. J. Alloys Compd. 2019, 810, 151880.

    CAS  Google Scholar 

  110. Li, Z. X.; Wang, J.; Dai, L.; Sun, X. H.; An, M.; Duan, C.; Li, J.; Ni, Y. H. Asymmetrically patterned cellulose nanofibers/graphene oxide composite film for humidity sensing and moist-induced electricity generation. ACS Appl. Mater. Interfaces 2020, 12, 55205–55214.

    CAS  Google Scholar 

  111. Chen, S.; Xia, H.; Ni, Q. Q. A wearable sustainable moistureinduced electricity generator based on rGO/GO/rGO sandwich-like structural film. Adv. Electron. Mater. 2021, 7, 2100222.

    CAS  Google Scholar 

  112. Lei, D. D.; Zhang, Q. X.; Liu, N. S.; Su, T. Y.; Wang, L. X.; Ren, Z. Q.; Zhang, Z.; Su, J.; Gao, Y. H. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Adv. Funct. Mater. 2022, 32, 2107330.

    CAS  Google Scholar 

  113. Chen, S.; Xia, H.; Ni, Q. Q. A sustainable, continuously expandable, wearable breath moisture-induced electricity generator. Carbon 2022, 194, 104–113.

    CAS  Google Scholar 

  114. Faramarzi, P.; Kim, B.; You, J. B.; Jeong, S. H. CNT-functionalized electrospun fiber mat for a stretchable moisturedriven power generator. J. Mater. Chem. C 2023, 11, 2206–2216.

    CAS  Google Scholar 

  115. Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 2016, 9, 912–916.

    CAS  Google Scholar 

  116. Cheng, H. H.; Huang, Y. X.; Zhao, F.; Yang, C.; Zhang, P. P.; Jiang, L.; Shi, G. Q.; Qu, L. T. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 2018, 11, 2839–2845.

    CAS  Google Scholar 

  117. Huang, Y. X.; Cheng, H. H.; Yang, C.; Zhang, P. P.; Liao, Q. H.; Yao, H. Z.; Shi, G. Q.; Qu, L. T. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 2018, 9, 4166.

    Google Scholar 

  118. Huang, Y. X.; Cheng, H. H.; Yang, C.; Yao, H. Z.; Li, C.; Qu, L. T. All-region-applicable, continuous power supply of graphene oxide composite. Energ. Environ. Sci. 2019, 12, 1848–1856

    CAS  Google Scholar 

  119. Fan, K.; Liu, X. K.; Liu, Y.; Li, Y.; Liu, X. Y.; Feng, W.; Wang, X. Spontaneous power generation from broad-humidity atmospheres through heterostructured F/O-bonded graphene monoliths. Nano Energy 2022, 91, 106605.

    CAS  Google Scholar 

  120. Yang, C.; Wang, H. Y.; Bai, J. X.; He, T. C.; Cheng, H. H.; Guang, T. L.; Yao, H. Z.; Qu, L. T. Transfer learning enhanced water-enabled electricity generation in highly oriented graphene oxide nanochannels. Nat. Commun. 2022, 13, 6819.

    CAS  Google Scholar 

  121. Han, B.; Zhang, Y. L.; Chen, Q. D.; Sun, H. B. Carbon-based photothermal actuators. Adv. Funct. Mater. 2018, 28, 1802235.

    Google Scholar 

  122. Zheng, Q. C.; Xu, C. X.; Jiang, Z. L.; Zhu, M.; Chen, C.; Fu, F. F. Smart actuators based on external stimulus response. Front. Chem. 2021, 9, 650358.

    CAS  Google Scholar 

  123. Chi, Y. D.; Li, Y. B.; Zhao, Y.; Hong, Y. Y.; Tang, Y. C.; Yin, J. Bistable and multistable actuators for soft robots: Structures, materials, and functionalities. Adv. Mater. 2022, 34, 2110384.

    CAS  Google Scholar 

  124. Li, M.; Pal, A.; Aghakhani, A.; Pena-Francesch, A.; Sitti, M. Soft actuators for real-world applications. Nat. Rev. Mater. 2022, 7, 235–249.

    CAS  Google Scholar 

  125. Wang, M. T.; Li, Q. C.; Shi, J. X.; Cao, X. Y.; Min, L. Z.; Li, X. F.; Zhu, L. L.; Lv, Y. H.; Qin, Z.; Chen, X. Y. et al. Bio-inspired high sensitivity of moisture-mechanical go films with period-gradient structures. ACS Appl. Mater. Interfaces 2020, 12, 33104–33112.

    CAS  Google Scholar 

  126. Van Opdenbosch, D.; Fritz-Popovski, G.; Wagermaier, W.; Paris, O.; Zollfrank, C. Moisture-driven ceramic bilayer actuators from a biotemplating approach. Adv. Mater. 2016, 28, 5235–5240.

    CAS  Google Scholar 

  127. Mao, J. W.; Chen, Z. D.; Han, D. D.; Ma, J. N.; Zhang, Y. L.; Sun, H. B. Nacre-inspired moisture-responsive graphene actuators with robustness and self-healing properties. Nanoscale 2019, 11, 20614–20619.

    CAS  Google Scholar 

  128. Liu, Y. Q.; Chen, Z. D.; Han, D. D.; Mao, J. W.; Ma, J. N.; Zhang, Y. L.; Sun, H. B. Bioinspired soft robots based on the moisture-responsive graphene oxide. Adv. Sci. (Weinh.) 2021, 8, 2002464.

    CAS  Google Scholar 

  129. Yang, L. Y.; Cui, J.; Zhang, L.; Xu, X. R.; Chen, X.; Sun, D. P. A moisture-driven actuator based on polydopamine-modified MXene/bacterial cellulose nanofiber composite film. Adv. Funct. Mater. 2021, 31, 2101378.

    CAS  Google Scholar 

  130. Li, J. J.; Zhang, G. H.; Cui, Z. P.; Bao, L. L.; Xia, Z. G.; Liu, Z. F.; Zhou, X. High performance and multifunction moisture-driven yin-yang-interface actuators derived from polyacrylamide hydrogel. Small, in press, https://doi.org/10.1002/SMLL.202303228.

  131. Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem., Int. Ed. 2013, 52, 10482–10486.

    CAS  Google Scholar 

  132. Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang, Z. P.; Qu, L. T. Moisture-activated torsional graphenefiber motor. Adv. Mater. 2014, 26, 2909–2913.

    CAS  Google Scholar 

  133. He, S. S.; Chen, P. N.; Qiu, L. B.; Wang, B. J.; Sun, X. M.; Xu, Y. F.; Peng, H. S. A mechanically actuating carbon-nanotube fiber in response to water and moisture. Angew. Chem., Int. Ed. 2015, 54, 14880–14884.

    CAS  Google Scholar 

  134. Gu, X. G.; Fan, Q. X.; Yang, F.; Cai, L.; Zhang, N.; Zhou, W. B.; Zhou, W. Y.; Xie, S. S. Hydro-actuation of hybrid carbon nanotube yarn muscles. Nanoscale 2016, 8, 17881–17886.

    CAS  Google Scholar 

  135. Kim, S. H.; Kwon, C. H.; Park, K.; Mun, T. J.; Lepró, X.; Baughman, R. H.; Spinks, G. M.; Kim, S. J. Bio-inspired, moisture-powered hybrid carbon nanotube yarn muscles. Sci. Rep. 2016, 6, 23016.

    CAS  Google Scholar 

  136. Park, S.; An, J.; Suk, J. W.; Ruoff, R. S. Graphene-based actuators. Small 2010, 6, 210–212.

    CAS  Google Scholar 

  137. Cheng, H. H.; Zhao, F.; Xue, J. L.; Shi, G. Q.; Jiang, L.; Qu, L. T. One single graphene oxide film for responsive actuation. ACS Nano 2016, 10, 9529–9535.

    CAS  Google Scholar 

  138. Ge, Y. H.; Cao, R.; Ye, S. J.; Chen, Z.; Zhu, Z. F.; Tu, Y. F.; Ge, D. T.; Yang, X. M. A bio-inspired homogeneous graphene oxide actuator driven by moisture gradients. Chem. Commun. 2018, 54, 3126–3129.

    CAS  Google Scholar 

  139. Ma, J. N.; Mao, J. W.; Han, D. D.; Fu, X. Y.; Wang, Y. X.; Zhang, Y. L. Laser programmable patterning of rGO/GO janus paper for multiresponsive actuators. Adv. Mater. Technol, 2019, 4, 1900554.

    CAS  Google Scholar 

  140. Zhang, Y. L.; Liu, Y. Q.; Han, D. D.; Ma, J. N.; Wang, D.; Li, X. B.; Sun, H. B. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers. Adv. Mater. 2019, 31, 1901585.

    Google Scholar 

  141. Xiang, C. X.; Wang, W.; Zhu, Q.; Xue, D.; Zhao, X.; Li, M. F.; Wang, D. Flexible and super-sensitive moisture-responsive actuators by dispersing graphene oxide into three-dimensional structures of nanofibers and silver nanowires. ACS Appl. Mater. Interfaces 2020, 12, 3245–3253.

    CAS  Google Scholar 

  142. Wang, W.; Wang, S.; Xiang, C. X.; Liu, S. Y.; Li, M. F.; Wang, D. Graphene oxide/nanofiber-based actuation films with moisture and photothermal stimulation response for remote intelligent control applications. ACS Appl. Mater. Interfaces 2021, 13, 48179–48188.

    CAS  Google Scholar 

  143. Lv, Y. H.; Li, Q. C.; Shi, J. X.; Qin, Z.; Lei, Q. J.; Zhao, B.; Zhu, L. L.; Pan, K. Graphene-based moisture actuator with oriented microstructures prepared by one-step laser reduction for accurately controllable responsive direction and position. ACS Appl. Mater. Interfaces 2022, 14, 12434–12441.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52022051, 22035005, 22075165, 52090032, and 52073159), and Tsinghua-Foshan Innovation Special Fund (No. 2020THFS0501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huhu Cheng or Liangti Qu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Lin, T., Cheng, H. et al. Carbon-based functional materials for atmospheric water utilization. Nano Res. 16, 12491–12505 (2023). https://doi.org/10.1007/s12274-023-6169-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6169-x

Keywords

Navigation