Skip to main content

Advertisement

Log in

Obtaining Water from Air Using Porous Metal–Organic Frameworks (MOFs)

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Water collection from moisture in air, i.e., atmospheric water harvesting, is an urgent future need for society. It can be used for water production everywhere and anytime as an alternative water source in remote areas. However, water harvesting and collection usually relies on desalination, fog, and dewing harvesting, which are energy intensive. In this respect, metal–organic frameworks (MOFs) have broad applicability for water harvesting in water-scarce areas; therefore, the current discussion focuses on this approach. Furthermore, recent progress on MOFs for moisture harvesters is critically discussed. In addition, the design, operation, and water harvesting mechanisms of MOFs are studied. Finally, we discuss critical points for future research for the design of new MOFs as moisture harvesters for use in practical applications.

Graphical Abstract

MOF adsorbents offer excellent operating capacity in various temperature and pressure ranges. Rational water harvesters can thus be developed by adjusting structural properties such as the porosity, functionalities, and metal centers, thereby enabling new devices to produce water even in remote areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright 2021 Elsevier B.V. All rights reserved (authors). Water adsorption isotherms of MOF-801 in kg/ as a function of RH (P/Psat−1) at various temperatures. Reproduced with permission from Ref. [44]. Copyright 2018, The author(s), Springer Nature. MIL-101 water adsorption properties. Reproduced with permission from Ref. [45]. Copyright 2015, Royal Society of Chemistry

Fig. 3

Copyright 2018, Springer Nature, the author(s)

Fig. 4
Fig. 5

Copyright 2020, the author(s), Science Advances

Fig. 6

Copyright 2020, the author(s), Springer Nature

Fig. 7

Copyright 2022, American Chemical Society

Fig. 8

Copyright 2022, American Chemical Society

Fig. 9

Copyright 2021, Zhengzhou University, John Wiley and Sons

Fig. 10

Copyright 2017, Elsevier

Similar content being viewed by others

References

  1. Zvobgo L, Do P (2020) COVID-19 and the call for ‘Safe Hands’: challenges facing the under-resourced municipalities that lack potable water access—a case study of Chitungwiza municipality, Zimbabwe. Water Res X 9:100074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Mueller JT, Gasteyer S (2021) The widespread and unjust drinking water and clean water crisis in the United States. Nat Commun 12:1–8

    Article  Google Scholar 

  3. Bidhuri S, Taqi M, Khan MMA (2018) Water-borne disease: link between human health and water use in the Mithepur and Jaitpur area of the NCT of Delhi. J Public Health (Bangkok) 26:119–126

    Article  Google Scholar 

  4. Lord J, Thomas A, Treat N, Forkin M, Bain R, Dulac P, Behroozi CH, Mamutov T, Fongheiser J, Kobilansky N, Washburn S, Truesdell C, Lee C, Schmaelzle PH (2021) Global potential for harvesting drinking water from air using solar energy. Nature 598:611–617

    Article  PubMed  PubMed Central  Google Scholar 

  5. LaPotin A, Kim H, Rao SR, Wang EN (2019) Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc Chem Res 52:1588–1597

    Article  PubMed  CAS  Google Scholar 

  6. Park H, Haechler I, Schnoering G, Ponte MD, Schutzius TM, Poulikakos D (2022) Enhanced atmospheric water harvesting with sunlight-activated sorption ratcheting. ACS Appl Mater Interfaces 14:2237–2245

    Article  PubMed  CAS  Google Scholar 

  7. Zhang L, Fang W-X, Wang C, Dong H, Ma S-H, Luo Y-H (2021) Porous frameworks for effective water adsorption: from 3D bulk to 2D nanosheets. Inorg Chem Front 8:898–913

    Article  CAS  Google Scholar 

  8. Gado MG, Nasser M, Hassan AA, Hassan H (2022) Adsorption-based atmospheric water harvesting powered by solar energy: comprehensive review on desiccant materials and systems. Process Saf Environ Prot 160:166–183

    Article  CAS  Google Scholar 

  9. Xu J, Li T, Yan T, Wu S, Wu M, Chao J, Huo X, Wang P, Wang R (2021) Ultrahigh solar-driven atmospheric water production enabled by scalable rapid-cycling water harvester with vertically aligned nanocomposite sorbent. Energy Environ Sci 14:5979–5994

    Article  CAS  Google Scholar 

  10. Kallenberger PA, Fröba M (2018) Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix. Commun Chem 1:1–6

    Article  CAS  Google Scholar 

  11. Xu J, Li T, Chao J, Wu S, Yan T, Li W, Cao B, Wang R (2020) Efficient solar-driven water harvesting from arid air with metal–organic frameworks modified by hygroscopic salt. Angew Chem Int Ed 59:5202–5210

    Article  CAS  Google Scholar 

  12. Li R, Shi Y, Wu M, Hong S, Wang P (2020) Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat Sustain 3:636–643

    Article  Google Scholar 

  13. Nandakumar DK, Zhang Y, Ravi SK, Guo N, Zhang C, Tan SC (2019) Solar energy triggered clean water harvesting from humid air existing above sea surface enabled by a hydrogel with ultrahigh hygroscopicity. Adv Mater 31:1806730

    Article  Google Scholar 

  14. Asim N, Badiei M, Alghoul MA, Mohammad M, Samsudin NA, Amin N, Sopian K (2021) Sorbent-based air water-harvesting systems: progress, limitation, and consideration. Rev Environ Sci Bio/Technol 20:257–279

    Article  CAS  Google Scholar 

  15. Kalmutzki MJ, Diercks CS, Yaghi OM (2018) Metal–organic frameworks for water harvesting from air. Adv Mater 30:1704304

    Article  Google Scholar 

  16. Wan Y, Xu J, Lian Z, Xu J (2021) Superhydrophilic surfaces with hierarchical groove structure for efficient fog collection. Colloids Surf A Physicochem Eng Asp 628:127241

    Article  CAS  Google Scholar 

  17. Chen L, Zhang B, Chen L, Liu H, Hu Y, Qiao S (2022) Hydrogen-bonded organic frameworks: design, applications, and prospects. Mater Adv 3:3680–3708

    Article  CAS  Google Scholar 

  18. Wang B, Lin RB, Zhang Z, Xiang S, Chen B (2020) Hydrogen-bonded organic frameworks as a tunable platform for functional materials. J Am Chem Soc 142:14399–14416

    Article  PubMed  CAS  Google Scholar 

  19. Lin RB, He Y, Li P, Wang H, Zhou W, Chen B (2019) Multifunctional porous hydrogen-bonded organic framework materials. Chem Soc Rev 48:1362–1389

    Article  PubMed  CAS  Google Scholar 

  20. Schoedel A, Rajeh S, Bu X-H, Zaworotko MJ, Zhang Z (2020) Why design matters: from decorated metal oxide clusters to functional metal-organic frameworks. Top Curr Chem 3781(378):1–55

    Google Scholar 

  21. Qian B, Chang Z, Bu XH (2020) Functionalized dynamic metal-organic frameworks as smart switches for sensing and adsorption applications. Top Curr Chem 378:1–39

    Google Scholar 

  22. Ren HM, Wang HW, Jiang YF, Tao ZX, Mu CY, Li G (2022) Proton conductive lanthanide-based metal-organic frameworks: synthesis strategies, structural features, and recent progress. Top Curr Chem 380:1–58

    Google Scholar 

  23. Gao J, Geng S, Chen Y, Cheng P, Zhang Z (2020) Theoretical exploration and electronic applications of conductive two-dimensional metal-organic frameworks. Top Curr Chem 378:1–24

    Google Scholar 

  24. Sukatis FF, Yee WS, Aris AZ (2022) Potential of biocompatible calcium-based metal-organic frameworks for the removal of endocrine-disrupting compounds in aqueous environments. Water Res 218:118406

    Article  PubMed  CAS  Google Scholar 

  25. Hu Z, Chen Z, Chen X, Wang J (2022) Advances in the adsorption/enrichment of proteins/peptides by metal–organic frameworks-affinity adsorbents. Trends Anal Chem 153:116627

    Article  CAS  Google Scholar 

  26. Peng P, Anastasopoulou A, Brooks K, Furukawa H, Bowden ME, Long JR, Autrey T, Breunig H (2022) Cost and potential of metal–organic frameworks for hydrogen back-up power supply. Nat Energy 2022:1–11

    Google Scholar 

  27. Kumar P, Anand B, Tsang YF, Kim KH, Khullar S, Wang B (2019) Regeneration, degradation, and toxicity effect of MOFs: opportunities and challenges. Environ Res 176:108488

    Article  PubMed  CAS  Google Scholar 

  28. Xu W, Yaghi OM (2020) Metal-organic frameworks for water harvesting from air, anywhere, anytime. ACS Cent Sci 6:1348–1354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zhou X, Zhang S, Liu Y, Meng J, Wang M, Sun Y, Xia L, He Z, Hu W, Ren L, Chen Z, Zhang X (2022) Antibacterial cascade catalytic glutathione-depleting MOF nanoreactors. ACS Appl Mater Interfaces 14:11104–11115

    Article  PubMed  CAS  Google Scholar 

  30. Peng H, Zhang X, Yang P, Zhao J, Zhang W, Feng N, Yang W, Tang J (2023) Defect self-assembly of metal-organic framework triggers ferroptosis to overcome resistance. Bioact Mater 19:1–11

    Article  PubMed  CAS  Google Scholar 

  31. Zhu Y, Xu P, Zhang X, Wu D (2022) Emerging porous organic polymers for biomedical applications. Chem Soc Rev 51:1377–1414

    Article  PubMed  CAS  Google Scholar 

  32. Zheng B, Lin X, Zhang X, Wu D, Matyjaszewski K (2020) Emerging functional porous polymeric and carbonaceous materials for environmental treatment and energy storage. Adv Funct Mater 30:1907006

    Article  CAS  Google Scholar 

  33. Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D (2019) Porous polymers as multifunctional material platforms toward task-specific applications. Adv Mater 31:1802922

    Article  Google Scholar 

  34. Yang J, Zhang X, Liu C, Wang Z, Deng L, Feng C, Tao W, Xu X, Cui W (2021) Biologically modified nanoparticles as theranostic bionanomaterials. Prog Mater Sci 118:100768

    Article  CAS  Google Scholar 

  35. Liu L, Bi M, Wang Y, Liu J, Jiang X, Xu Z, Zhang X (2021) Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 13:19352–19366

    Article  PubMed  CAS  Google Scholar 

  36. Ugale B, Kumar S, Dhilip Kumar TJ, Nagaraja CM (2019) Environmentally friendly, co-catalyst-free chemical fixation of CO2 at mild conditions using dual-walled nitrogen-rich three-dimensional porous metal-organic frameworks. Inorg Chem 58:3925–3936

    Article  PubMed  CAS  Google Scholar 

  37. Sun K, Liu M, Pei J, Li D, Ding C, Wu K, Jiang HL (2020) Incorporating transition-metal phosphides into metal-organic frameworks for enhanced photocatalysis. Angew Chem Int Ed 59:22749–22755

    Article  CAS  Google Scholar 

  38. Dhakshinamoorthy A, Asiri AM, Garcia H (2017) Tuneable nature of metal organic frameworks as heterogeneous solid catalysts for alcohol oxidation. Chem Commun 53:10851–10869

    Article  CAS  Google Scholar 

  39. Jiang X, Jin H, Sun Y, Sun Z, Gui R (2020) Assembly of black phosphorus quantum dots-doped MOF and silver nanoclusters as a versatile enzyme-catalyzed biosensor for solution, flexible substrate and latent fingerprint visual detection of baicalin. Biosens Bioelectron 152:112012

    Article  PubMed  CAS  Google Scholar 

  40. Amalraj A, Perumal P (2022) Dual-mode amplified fluorescence oligosensor mediated MOF-MoS2 for ultra-sensitive simultaneous detection of 17β -estradiol and chloramphenicol through catalytic target-recycling activity of exonuclease I. Microchem J 173:106971

    Article  CAS  Google Scholar 

  41. Li J, Song S, Meng J, Tan L, Liu X, Zheng Y, Li Z, Yeung KWK, Cui Z, Liang Y, Zhu S, Zhang X, Wu S (2021) 2D MOF periodontitis photodynamic ion therapy. J Am Chem Soc 143:15427–15439

    Article  PubMed  CAS  Google Scholar 

  42. Wahiduzzaman M, Lenzen D, Maurin G, Stock N, Wharmby MT (2018) Rietveld refinement of MIL-160 and its structural flexibility upon H2O and N2 adsorption. Eur J Inorg Chem 2018:3626–3632

    Article  CAS  Google Scholar 

  43. Sleiti AK, Al-Khawaja H, Al-Khawaja H, Al-Ali M (2021) Harvesting water from air using adsorption material—prototype and experimental results. Sep Purif Technol 257:117921

    Article  CAS  Google Scholar 

  44. Kim H, Rao SR, Kapustin EA, Zhao L, Yang S, Yaghi OM, Wang EN (2018) Adsorption-based atmospheric water harvesting device for arid climates. Nat Commun 9:1–8

    Google Scholar 

  45. Ko N, Choi PG, Hong J, Yeo M, Sung S, Cordova KE, Park HJ, Yang JK, Kim J (2015) Tailoring the water adsorption properties of MIL-101 metal–organic frameworks by partial functionalization. J Mater Chem A 3:2057–2064

    Article  CAS  Google Scholar 

  46. Yue H, Zeng Q, Huanng J, Guo Z, Liu W (2021) Fog collection behavior of bionic surface and large fog collector: A review. Adv Colloid Interface Sci 300:102583

    Article  PubMed  Google Scholar 

  47. Aleid S, Wu M, Li R, Wang W, Zhang C, Zhang L, Wang P (2022) Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting. ACS Mater Lett 4:511–520

    Article  CAS  Google Scholar 

  48. Mahat S, Jha AK, Darlami K (2019) Study of fog water collector mesh with different shade coefficients. Proc IOE Grad Conf 6:389–394

    Google Scholar 

  49. Ojani C (2021) Ecology of capture: creating land titles out of thin air in coastal Peru. Ethnos. https://doi.org/10.1080/00141844.2021.1965643

    Article  Google Scholar 

  50. Kaseke KF (2018) A stable isotope approach to investigate ecohydrological processes in Namibia. Indiana University-Purdue University Indianapolis

  51. Nguyen LT, Bai Z, Zhu J, Gao C, Liu X, Wagaye BT, Li J (2021) Three-dimensional multilayer vertical filament meshes for enhancing efficiency in fog water harvesting ACS. Omega 5:3910–3920

    Article  Google Scholar 

  52. Seo D, Lee C, Nam Y (2014) Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing. Langmuir 30:15468–15476

    Article  PubMed  CAS  Google Scholar 

  53. Javed M, Pirah S, Xiao Y, Sun Y, Ji Y, Nawaz MZ, Cai Z, Xu B (2021) Complete system to generate clean water from a contaminated water body by a handmade flower-like light absorber. ACS Omega 6:35104–35111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Domen JK, Stringfellow WT, Camarillo MK, Gulati S (2014) Fog water as an alternative and sustainable water resource. Clean Technol Environ Policy 16:235–249

    Article  Google Scholar 

  55. Lee A, Moon M-W, Lim H, Kim W-D, Kim H-Y (2012) Water harvest via dewing. Langmuir 28:10183–10191

    Article  PubMed  CAS  Google Scholar 

  56. Kim H, Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Umans AS, Yaghi OM, Wang EN (2017) Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356:430–434

    Article  PubMed  CAS  Google Scholar 

  57. Bhushan B (2019) Bioinspired water collection methods to supplement water supply. Philos Trans R Soc A 377:20190119

    Article  Google Scholar 

  58. Meng X, Peng X, Xue J, Wei Y, Sun Y, Dai Y (2021) A biomass-derived, all-day-round solar evaporation platform for harvesting clean water from microplastic pollution. J Mater Chem A 9:11013–11024

    Article  CAS  Google Scholar 

  59. Zhou X, Lu H, Zhao F, Yu G (2020) Atmospheric water harvesting: a review of material and structural designs. ACS Mater Lett 2:671–684

    Article  CAS  Google Scholar 

  60. Liu X, Shan Y, Zhang S, Kong Q, Pang H (2022) Application of metal organic framework in wastewater treatment. Green Energy Environ. https://doi.org/10.1016/J.GEE.2022.03.005

    Article  Google Scholar 

  61. Eng AYS, Kumar V, Zhang Y, Luo J, Wang W, Sun Y, Li W, Seh ZW (2021) Room-temperature sodium-sulfur batteries and beyond: realizing practical high energy systems through anode, cathode, and electrolyte engineering. Adv Energy Mater 11:2003493

    Article  CAS  Google Scholar 

  62. Lv X, Feng L, Wang K, Xie L, He T, Wu W, Li J, Zhou H (2021) A Series of mesoporous rare-earth metal-organic frameworks constructed from organic secondary building units. Angew Chem Int Ed 60:2053–2057

    Article  CAS  Google Scholar 

  63. Ma Q, Zhang T, Wang B (2022) Shaping of metal-organic frameworks, a critical step toward industrial applications. Matter 5:1070–1091

    Article  CAS  Google Scholar 

  64. Lisensky GC, Yaghi OM (2022) Visualizing pore packing and topology in MOFs. J Chem Educ 99:1998–2004

    Article  CAS  Google Scholar 

  65. Han J, He X, Liu J, Ming R, Lin M, Li H, Zhou X, Deng H (2022) Determining factors in the growth of MOF single crystals unveiled by in situ interface imaging. Chemistry. https://doi.org/10.1016/J.CHEMPR.2022.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  66. Begum S, Hassan Z, Bräse S, Tsotsalas M (2020) Polymerization in MOF-confined nanospaces: tailored architectures, functions, and applications. Langmuir 36:10657–10673

    Article  PubMed  CAS  Google Scholar 

  67. Carrington EJ, Dodsworth SF, van Meurs S, Warren MR, Brammer L (2021) Post-synthetic modification unlocks a 2D-to-3D switch in MOF breathing response: a single-crystal-diffraction mapping study. Angew Chem Int Ed 60:17920–17924

    Article  CAS  Google Scholar 

  68. Bag PP, Singh GP, Singha S, Roymahapatra G (2020) Synthesis of metal-organic frameworks (MOFs) and their biological, catalytic and energetic application: a mini review. Eng Sci 13:1–10

    Google Scholar 

  69. Desai AV, Sharma S, Let S, Ghosh SK (2019) N-donor linker based metal-organic frameworks (MOFs): advancement and prospects as functional materials. Coord Chem Rev 395:146–192

    Article  CAS  Google Scholar 

  70. Khan S, Vakil F, Zeeshan M, Shahid M (2021) Postsynthetic modification (PSM) in metal-organic frameworks (MOFs): Icing on the cake. ACS Symp Ser 1393:83–115

    Article  CAS  Google Scholar 

  71. Ma L, Gao J, Huang C, Xu X, Xu L, Ding R, Bao H, Wang Z, Xu G, Li Q, Deng P, Ma H (2021) UiO-66-NH-(AO) MOFs with a new ligand BDC-NH-(CN) for efficient extraction of uranium from seawater. ACS Appl Mater Interfaces 13:57831–57840

    Article  PubMed  CAS  Google Scholar 

  72. Fan L, Yue L, Sun W, Wang X, Zhou P, Zhang Y, He Y (2021) Ligand bent-angle engineering for tuning topological structures and acetylene purification performances of copper-diisophthalate frameworks. ACS Appl Mater Interfaces 13:40788–40797

    Article  PubMed  Google Scholar 

  73. Li X-X, Zheng S-T (2021) Three-dimensional metal-halide open frameworks. Coord Chem Rev 430:213663

    Article  CAS  Google Scholar 

  74. Zhang X, Yang Q, Yun M, Si C, An N, Jia M, Liu J, Dong X (2020) Seven new metal–organic frameworks assembled from semi-rigid polycarboxylate and auxiliary N-donor ligands: syntheses, structures and properties. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 76:1001–1017

    Article  CAS  Google Scholar 

  75. Nemiwal M, Kumar D (2020) Metal organic frameworks as water harvester from air: hydrolytic stability and adsorption isotherms. Inorg Chem Commun 122:108279

    Article  CAS  Google Scholar 

  76. Gido B, Friedler E, Broday DM (2016) Assessment of atmospheric moisture harvesting by direct cooling. Atmos Res 182:156–162

    Article  Google Scholar 

  77. Li R, Shi Y, Alsaedi M, Wu M, Shi L, Wang P (2018) Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator. Environ Sci Technol 52:11367–11377

    Article  PubMed  CAS  Google Scholar 

  78. Liu J, Goetjen TA, Wang Q, Knapp JG, Wasson MC, Yang Y, Syed ZH, Delferro M, Notestein JM, Farha OK (2022) MOF-enabled confinement and related effects for chemical catalyst presentation and utilization. Chem Soc Rev 51:1045–1097

    Article  PubMed  CAS  Google Scholar 

  79. Byun Y, Je SH, Talapaneni SN, Coskun A (2019) Advances in porous organic polymers for efficient water capture. Chem Eur J 25:10262–10283

    Article  PubMed  CAS  Google Scholar 

  80. Lu J, Luan J, Li Y, He X, Chen L, Zhang Y (2020) Hydrophilic maltose-modified magnetic metal-organic framework for highly efficient enrichment of N-linked glycopeptides. J Chromatogr A 1615:460754

    Article  PubMed  CAS  Google Scholar 

  81. Bae J, Park SH, Moon D, Jeong NC (2022) Crystalline hydrogen bonding of water molecules confined in a metal-organic framework. Commun Chem 51(5):1–10

    Google Scholar 

  82. Park S, Lee J, Jeong H, Bae S, Kang J, Moon D, Park J (2022) Multi-stimuli-engendered radical-anionic MOFs: Visualization of structural transformation upon radical formation. Chemistry. https://doi.org/10.1016/J.CHEMPR.2022.03.023

    Article  PubMed  Google Scholar 

  83. Islamoglu T, Idrees KB, Son FA, Chen Z, Lee S-J, Li P, Farha OK (2022) Are you using the right probe molecules for assessing the textural properties of metal–organic frameworks? J Mater Chem A 10:157–173

    Article  CAS  Google Scholar 

  84. Yang J, Zhang X, Qu H, Yu ZG, Zhang Y, Eey TJ, Zhang YW, Tan SC (2020) A moisture-hungry copper complex harvesting air moisture for potable water and autonomous urban agriculture. Adv Mater 32:2002936

    Article  CAS  Google Scholar 

  85. Choi JI, Moon D, Chun H (2021) Static and dynamic adsorptions of water vapor by cyclic [Zr36] clusters: implications for atmospheric water capture using molecular solids. Bull Korean Chem Soc 42:294–302

    Article  CAS  Google Scholar 

  86. Wang Y, Strohmaier K, Strasser M (2022) Investigation of water kinetics in zeolite linde-type-A crystals by a concentration-swing frequency response. AIChE J. https://doi.org/10.1002/aic.17737

    Article  Google Scholar 

  87. Kim H, Rao SR, LaPotin A, Lee S, Wang EN (2020) Thermodynamic analysis and optimization of adsorption-based atmospheric water harvesting. Int J Heat Mass Transf 161:120253

    Article  CAS  Google Scholar 

  88. Yilmaz G, Meng FL, Lu W, Abed J, Peh CKN, Gao M, Sargent EH, Ho GW (2020) Autonomous atmospheric water seeping MOF matrix. Sci Adv 6:1–8. https://doi.org/10.1126/sciadv.abc8605

    Article  CAS  Google Scholar 

  89. Anjali C, Renuka NK (2022) Atmospheric water harvesting: prospectus on graphene-based materials. J Mater Res 20:1–14. https://doi.org/10.1557/S43578-022-00629-8

    Article  Google Scholar 

  90. Qin M, Hou P, Wu Z, Wang J (2020) Precise humidity control materials for autonomous regulation of indoor moisture. Build Environ 169:106581

    Article  Google Scholar 

  91. Scherle M, Nowak TA, Welzel S, Etzold BJM, Nieken U (2022) Experimental study of 3D—structured adsorbent composites with improved heat and mass transfer for adsorption heat pumps. Chem Eng J 431:133365

    Article  CAS  Google Scholar 

  92. Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568

    Article  CAS  Google Scholar 

  93. Tao Y, Li Q, Wu Q, Li H (2021) Embedding metal foam into metal-organic framework monoliths for triggering a highly efficient release of adsorbed atmospheric water by localized eddy current heating. Mater Horizons 8:1439–1445

    Article  CAS  Google Scholar 

  94. Logan MW, Langevin S, Xia Z (2020) Reversible atmospheric water harvesting using metal-organic frameworks. Sci Rep 10:1492. https://doi.org/10.1038/s41598-020-58405-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Li L, Shi Z, Liang H, Liu J, Qiao Z (2022) Machine learning-assisted computational screening of metal-organic frameworks for atmospheric water harvesting. Nanomaterials. https://doi.org/10.3390/nano12010159

    Article  PubMed  PubMed Central  Google Scholar 

  96. Choi J, Lin LC, Grossman JC (2018) Role of structural defects in the water adsorption properties of MOF-801. J Phys Chem C 122:5545–5552

    Article  CAS  Google Scholar 

  97. Hu Y, Wang Y, Fang Z, Wan X, Dong M, Ye Z, Peng X (2022) MOF supraparticles for atmosphere water harvesting at low humidity. J Mater Chem A 10:15116–15126

    Article  CAS  Google Scholar 

  98. Hanikel N, Prévot MS, Fathieh F, Kapustin EA, Lyu H, Wang H, Diercks NJ, Glover TG, Yaghi OM (2019) Rapid cycling and exceptional yield in a metal-organic framework water harvester. ACS Cent Sci 5:1699–1706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Tao Y, Wu Q, Huang C, Su W, Ying Y, Zhu D, Li H (2022) Sandwich-structured carbon paper/metal–organic framework monoliths for flexible solar-powered atmospheric water harvesting on demand. ACS Appl Mater Interfaces 14:10966–10975

    Article  PubMed  CAS  Google Scholar 

  100. Banga-Bothy G-A, Samokhvalov A (2022) Porphyrin aluminum MOF with ultra-high water sorption capacity: In-situ time-dependent ATR-FTIR spectroscopy and gravimetry to study mechanism of water bonding and desorption. Vib Spectrosc 119:103356

    Article  CAS  Google Scholar 

  101. Gcwensa N, Oliver CL (2020) Large differences in carbon dioxide and water sorption capabilities in a system of closely related isoreticular Cd(II)-based mixed-ligand metal-organic frameworks. Inorg Chem 59:13211–13222

    Article  PubMed  CAS  Google Scholar 

  102. Henry B, Samokhvalov A (2022) Hygroscopic metal-organic framework MIL-160(Al): In-situ time-dependent ATR-FTIR and gravimetric study of mechanism and kinetics of water vapor sorption. Spectrochim Acta Part A Mol Biomol Spectrosc 267:120550

    Article  CAS  Google Scholar 

  103. Zhang YZ, He T, Kong XJ, Lv XL, Wu XQ, Li JR (2018) Tuning water sorption in highly stable Zr(IV)-metal-organic frameworks through local functionalization of metal clusters. ACS Appl Mater Interfaces 10:27868–27874

    Article  PubMed  CAS  Google Scholar 

  104. Gong W, Xie H, Idrees KB, Son FA, Chen Z, Sha F, Liu Y, Cui Y, Farha OK (2022) Water sorption evolution enabled by reticular construction of zirconium metal-organic frameworks based on a unique [2.2]paracyclophane scaffold. J Am Chem Soc 144:1826–1834

    Article  PubMed  CAS  Google Scholar 

  105. Hu Y, Fang Z, Ma X, Wan X, Wang S, Fan S, Ye Z, Peng X (2021) CaCl2 Nanocrystals decorated photothermal Fe-ferrocene MOFs hollow microspheres for atmospheric water harvesting. Appl Mater Today 23:101076

    Article  Google Scholar 

  106. Butova VV, Pankin IA, Burachevskaya OA, Vetlitsyna-Novikova KS, Soldatov AV (2021) New fast synthesis of MOF-801 for water and hydrogen storage: Modulator effect and recycling options. Inorg Chim Acta 514:120025

    Article  CAS  Google Scholar 

  107. Liu J, Wang Z, Cheng P, Zaworotko MJ, Chen Y, Zhang Z (2022) Post-synthetic modifications of metal–organic cages. Nat Rev Chem. https://doi.org/10.1038/s41570-022-00380-y

    Article  Google Scholar 

  108. Zhu NX, Wei ZW, Chen CX, Xiong XH, Xiong YY, Zeng Z, Wang W, Jiang JJ, Fan YN, Su CY (2022) High water adsorption MOFs with optimized pore-nanospaces for autonomous indoor humidity control and pollutants removal. Angew Chem Int Ed. https://doi.org/10.1002/ANIE.202112097

    Article  Google Scholar 

  109. Silva MP, Ribeiro AM, Silva CG, Ho Cho K, Lee U-H, Faria JL, Loureiro JM, Chang J-S, Rodrigues AE, Ferreira A (2022) Atmospheric water harvesting on MIL-100(Fe) upon a cyclic adsorption process. Sep Purif Technol 290:120803

    Article  CAS  Google Scholar 

  110. Li A, Xiong J, Liu Y, Wang L, Qin X, Yu J (2021) A Rapid-Ab/desorption and portable photothermal MIL-101(Cr) nanofibrous composite membrane fabricated by spray-electrospinning for atmosphere water harvesting. Energy Environ Mater. https://doi.org/10.1002/EEM2.12254

    Article  Google Scholar 

  111. Gu X, Han G, Yang Q, Liu D (2022) Confinement-unconfinement transformation of ILs in IL@MOF composite with multiple adsorption sites for efficient water capture and release. Adv Mater Interfaces. https://doi.org/10.1002/ADMI.202102354

    Article  Google Scholar 

  112. Feng Y, Ge T, Chen B, Zhan G, Wang R (2021) A regulation strategy of sorbent stepwise position for boosting atmospheric water harvesting in arid area. Cell Rep Phys Sci 2:100561

    Article  CAS  Google Scholar 

  113. Xu J, Li T, Chao J, Wu S, Yan T, Li W, Cao B, Wang R (2020) Efficient solar-driven water harvesting from arid air with metal-organic frameworks modified by hygroscopic salt. Angew Chem Int Ed 59:5202–5210

    Article  CAS  Google Scholar 

  114. Li Q, Ying Y, Tao Y, Li H (2022) Assemblable carbon fiber/metal-organic framework monoliths for energy-efficient atmospheric water harvesting. Ind Eng Chem Res 61:1344–1354

    Article  CAS  Google Scholar 

  115. Silva MP, Ribeiro AM, Silva CG, Nogueira IBR, Cho K-H, Lee U, Faria JL, Loureiro JL, Chang J-S, Rodrigues AE (2021) MIL-160 (Al) MOF’s potential in adsorptive water harvesting. Adsorption 27:213–226

    Article  CAS  Google Scholar 

  116. Solovyeva M, Krivosheeva I, Gordeeva L, Aristov Y, Krzywanski J (2021) MIL-160 as an adsorbent for atmospheric water harvesting. Energies 14:3586

    Article  CAS  Google Scholar 

  117. Liu XY, Wang WW, Xie ST, Pan QW (2021) Performance characterization and application of composite adsorbent LiCl@ACFF for moisture harvesting. Sci Rep 11:1–10

    Google Scholar 

  118. Wang L, Wang K, An HT, Huang H, Xie LH, Li JR (2021) A hydrolytically stable Cu(II)-based metal-organic framework with easily accessible ligands for water harvesting. ACS Appl Mater Interfaces 13:49509–49518

    Article  PubMed  CAS  Google Scholar 

  119. Shah BB, Kundu T, Zhao D (2019) Mechanical properties of shaped metal-organic frameworks. Top Curr Chem 377:1–34

    CAS  Google Scholar 

  120. Duan W, Zhao Z, An H, Zhang Z, Cheng P, Chen Y, Huang H (2019) State-of-the-art and prospects of biomolecules: incorporation in functional metal-organic frameworks. Top Curr Chem 377:1–31

    CAS  Google Scholar 

  121. Wang M, Yu F (2021) High-throughput screening of metal-organic frameworks for water harvesting from air. Colloids Surf A Physicochem Eng Asp 624:126746

    Article  CAS  Google Scholar 

  122. Guo Z, Li K, Wu Y, Wang J, Li Q (2021) Controlling the pores of AlCl3-fumarate MOF by TiO2 nanoparticles for the improvement of its atmospheric water harvesting performance. Microporous Mesoporous Mater 328:111474

    Article  CAS  Google Scholar 

  123. Perfecto-Irigaray M, Beobide G, Calero S, Castillo O, Da Silva I, Gutierrez Sevillano JJ, Luque A, Pérez-Yáñez S, Velasco LF (2021) Metastable Zr/Hf-MOFs: the hexagonal family of EHU-30 and their water-sorption induced structural transformation. Inorg Chem Front 8:4767–4779

    Article  CAS  Google Scholar 

  124. Wu Q, Su W, Li Q, Tao Y, Li H (2021) Enabling continuous and improved solar-driven atmospheric water harvesting with Ti3C2-incorporated metal-organic framework monoliths. ACS Appl Mater Interfaces 13:38906–38915

    Article  PubMed  CAS  Google Scholar 

  125. Trapani F, Polyzoidis A, Loebbecke S, Piscopo CG (2016) On the general water harvesting capability of metal-organic frameworks under well-defined climatic conditions. Microporous Mesoporous Mater 230:20–24

    Article  CAS  Google Scholar 

  126. Li J, Wang Y, Chen Y, Xiong Q, Yang J, Li L, Li J (2021) Round-the-clock water harvesting from dry air using a metal-organic framework. Chin J Chem Eng. https://doi.org/10.1016/J.CJCHE.2021.08.014

    Article  Google Scholar 

  127. Wu E, Qian G, Li B, Wu E, Qian G, Li B (2022) Water adsorption in aluminum-based metal-organic framework for atmospheric water harvesting. J ZheJiang Univ Eng Sci 56:186–192

    Google Scholar 

  128. Lu Z, Duan J, Du L, Liu Q, Schweitzer NM, Hupp JT (2022) Incorporation of free halide ions stabilizes metal–organic frameworks (MOFs) against pore collapse and renders large-pore Zr-MOFs functional for water harvesting. J Mater Chem A 10:6442–6447

    Article  CAS  Google Scholar 

  129. Tang SY, Wang YS, Yuan YF, Ba YQ, Wang LQ, Hao GP, Lu AH (2022) Hydrophilic carbon monoliths derived from metal-organic frameworks@resorcinol-formaldehyde resin for atmospheric water harvesting. New Carbon Mater 37:237–244

    Article  Google Scholar 

  130. Guillerm V, Eddaoudi M (2021) The importance of highly connected building units in reticular chemistry: thoughtful design of metal-organic frameworks. Acc Chem Res 54:3298–3312

    Article  PubMed  CAS  Google Scholar 

  131. Jeoung S, Kim S, Kim M, Moon HR (2020) Pore engineering of metal-organic frameworks with coordinating functionalities. Coord Chem Rev 420:213377

    Article  CAS  Google Scholar 

  132. Jiao J, Gong W, Wu X, Yang S, Cui Y (2019) Multivariate crystalline porous materials: synthesis, property and potential application. Coord Chem Rev 385:174–190

    Article  CAS  Google Scholar 

  133. Towsif Abtab SM, Alezi D, Bhatt PM, Shkurenko A, Belmabkhout Y, Aggarwal H, Weseliński ŁJ, Alsadun N, Samin U, Hedhili MN, Eddaoudi M (2018) Reticular chemistry in action: a hydrolytically stable MOF capturing twice its weight in adsorbed water. Chem 4:94–105

    Article  CAS  Google Scholar 

  134. Karmakar A, Prabakaran V, Zhao D, Chua KJ (2020) A review of metal-organic frameworks (MOFs) as energy-efficient desiccants for adsorption driven heat-transformation applications. Appl Energy 269:115070

    Article  CAS  Google Scholar 

  135. Mandal S, Natarajan S, Mani P, Pankajakshan A (2021) Post-synthetic modification of metal-organic frameworks toward applications. Adv Funct Mater 31:1–22

    Article  Google Scholar 

  136. Yilmaz G, Peh SB, Zhao D, Ho GW (2019) Atomic- and molecular-level design of functional metal-organic frameworks (MOFs) and derivatives for energy and environmental applications. Adv Sci Weinheim Baden-Wurttemberg Ger 6:1901129

    CAS  Google Scholar 

  137. Furukawa H, Gándara F, Zhang YB, Jiang J, Queen WL, Hudson MR, Yaghi OM (2014) Water adsorption in porous metal-organic frameworks and related materials. J Am Chem Soc 136:4369–4381

    Article  PubMed  CAS  Google Scholar 

  138. Pires J, Pinto ML, Carvalho A, De Carvalho MB (2003) Assessment of hydrophobic-hydrophilic properties of microporous materials from water adsorption isotherms. Adsorption 94(9):303–309

    Article  Google Scholar 

  139. Canivet J, Bonnefoy J, Daniel C, Legrand A, Coasne B, Farrusseng D (2014) Structure–property relationships of water adsorption in metal–organic frameworks. New J Chem 38:3102–3111

    Article  CAS  Google Scholar 

  140. Dhakshinamoorthy A, Li Z, Garcia H (2018) Catalysis and photocatalysis by metal organic frameworks. Chem Soc Rev 47:8134–8172

    Article  PubMed  CAS  Google Scholar 

  141. Li K, Zhao Y, Yang J, Gu J (2022) Nanoemulsion-directed growth of MOFs with versatile architectures for the heterogeneous regeneration of coenzymes. Nat Commun 131(13):1–8

    Google Scholar 

  142. Asadevi H, Kumari PPNC, Amma RP, Khadar SA, Sasi SC, Raghunandan R (2022) ZnO@MOF-5 as a fluorescence “Turn-Off” sensor for ultrasensitive detection as well as probing of Copper(II) ions. ACS Omega 7:13031–13041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Healy C, Patil KM, Wilson BH, Hermanspahn L, Harvey-Reid NC, Howard BI, Kleinjan C, Kolien J, Payet F, Telfer SG, Kruger PE, Bennett TD (2020) The thermal stability of metal-organic frameworks. Coord Chem Rev 419:213388

    Article  CAS  Google Scholar 

  144. Cui B, Fu G (2022) Process of metal–organic framework (MOF)/covalent–organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. Nanoscale 14:1679–1699

    Article  PubMed  CAS  Google Scholar 

  145. Guo C, Duan F, Zhang S, He L, Wang M, Chen J, Zhang J, Jia Q, Zhang Z, Du M (2022) Heterostructured hybrids of metal–organic frameworks (MOFs) and covalent–organic frameworks (COFs). J Mater Chem A 10:475–507

    Article  CAS  Google Scholar 

  146. Sun D, Jang S, Yim SJ, Ye L, Kim DP (2018) Metal doped core-shell metal-organic frameworks@covalent organic frameworks (MOFs@COFs) hybrids as a novel photocatalytic platform. Adv Funct Mater 28:1707110

    Article  Google Scholar 

  147. You J, Zhao Y, Wang L, Bao W (2021) Recent developments in the photocatalytic applications of covalent organic frameworks: a review. J Clean Prod 291:125822

    Article  CAS  Google Scholar 

  148. Dong J, Han X, Liu Y, Li H, Cui Y (2020) Metal-covalent organic frameworks (MCOFs): a bridge between metal-organic frameworks and covalent organic frameworks. Angew Chem Int Ed 59:13722–13733

    Article  CAS  Google Scholar 

  149. Wang X, Wang X, Hu C, Guo W, Wu X, Chen G, Dai W, Zhen S, Huang C, Li Y (2022) Controlled synthesis of zinc-metal organic framework microflower with high efficiency electrochemiluminescence for miR-21 detection. Biosens Bioelectron 213:114443

    Article  PubMed  CAS  Google Scholar 

  150. Ding M, Jiang HL (2021) Improving water stability of metal-organic frameworks by a general surface hydrophobic polymerization. CCS Chem 3:2740–2748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China, for providing a research platform.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Brij Mohan or Quansheng Chen.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, B., Kumar, S. & Chen, Q. Obtaining Water from Air Using Porous Metal–Organic Frameworks (MOFs). Top Curr Chem (Z) 380, 54 (2022). https://doi.org/10.1007/s41061-022-00410-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00410-9

Keywords

Navigation