Skip to main content
Log in

High-lattice-adapted surface modifying Na4MnV(PO4)3 for better sodium storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Sodium-ion batteries (SIBs) are required to possess long cycle life when used for large-scale energy storage. The polyanionic Na4MnV(PO4)3 (NMVP) reveals good cyclic stability due to its unique three-dimensional (3D) frame structure, but it still faces the challenge of interfacial degradation in practical applications. In this work, NASICON-type Na1.3Al0.7Ti1.3(PO4)3 (NATP) was deposited on the surface of NMVP to promote interface stability by surface modification and gradient doping. As a result, the optimized NMVP@2%NATP released a capacity retention of 44.8% after 1000 cycles at 5 C, much higher than that of the initial NMVP (28.9%). The enhanced electrochemical performance was mainly attributed to NATP coating acting as a fast ion transport carrier and physical barrier, significantly facilitating the Na+ diffusion and isolating side reaction at the electrode/electrolyte interface. On the other hand, Ti4+ and Al3+ cations from the NATP were partially doped inside the NMVP surface to boost the transport of Na+, and the perfect lattice matching of NVMP and NATP improved the interface and structural stability accompanying long cycling. This work demonstrated the effectiveness of surface modification with high lattice match material and provided new perspectives for high energy density solid-state SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Sodium-ion batteries: Present and future. Chem. Soc. Rev. 2017, 46, 3529–3614.

    CAS  PubMed  Google Scholar 

  2. Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

    ADS  Google Scholar 

  3. Chen, M. Z.; Liu, Q. N.; Wang, S. W.; Wang, E. H.; Guo, X. D.; Chou, S. L. High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies. Adv. Energy Mater. 2019, 9, 1803609.

    Google Scholar 

  4. Eftekhari, A.; Kim, D. W. Sodium-ion batteries: New opportunities beyond energy storage by lithium. J. Power Sources 2018, 395, 336–348.

    ADS  CAS  Google Scholar 

  5. Xiao, Y.; Abbasi, N. M.; Zhu, Y. F.; Li, S.; Tan, S. J.; Ling, W.; Peng, L.; Yang, T. Q.; Wang, L. D.; Guo, X. D. et al. Layered oxide cathodes promoted by structure modulation technology for sodium-ion batteries. Adv. Funct. Mater., 2020, 30, 2001334.

    CAS  Google Scholar 

  6. Mauger, A.; Julien, C. M. State-of-the-art electrode materials for sodium-ion batteries. Materials (Basel) 2020, 13, 3453.

    ADS  CAS  PubMed  Google Scholar 

  7. Li, H. X.; Xu, M.; Zhang, Z. A.; Lai, Y. Q.; Ma, J. M. Engineering of polyanion type cathode materials for sodium-ion batteries: Toward higher energy/power density. Adv. Funct. Mater. 2020, 30, 2000473.

    CAS  Google Scholar 

  8. Chen, G. X.; Huang, Q.; Wu, T.; Lu, L. Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries—A review. Adv. Funct. Mater. 2020, 30, 2001289.

    CAS  Google Scholar 

  9. Yan, D.; Yang, H. Y.; Bai, Y. Tactics to optimize conversion-type metal fluoride/sulfide/oxide cathodes toward advanced lithium metal batteries. Nano Res. 2023, 16, 8173–8190.

    ADS  CAS  Google Scholar 

  10. Chen, S. Q.; Wu, C.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 2017, 29, 1700431.

    Google Scholar 

  11. Barpanda, P.; Lander, L.; Nishimura, S. I.; Yamada, A. Polyanionic insertion materials for sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1703055.

    Google Scholar 

  12. Jin, T.; Li, H. X.; Zhu, K. J.; Wang, P. F.; Liu, P.; Jiao, L. F. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342–2377.

    PubMed  Google Scholar 

  13. Zhou, W. D.; Xue, L. G.; Lü, X. J.; Gao, H. C.; Li, Y. T.; Xin, S.; Fu, G. T.; Cui, Z. M.; Zhu, Y.; Goodenough, J. B. NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction. Nano Lett. 2016, 12, 7836–7841.

    ADS  Google Scholar 

  14. Ma, H. Y.; Bai, J.; Wang, P. Y.; Li, W. Y.; Mao, Y. J.; Xiao, K.; Zhu, X. B.; Zhao, B. C.; Sun Y. P. Double-carbon-layer coated Na4MnV(PO4)3 towards high-performance sodium-ion full batteries. Adv. Mater. Interfaces 2022, 9, 2201386.

    CAS  Google Scholar 

  15. Ling, R.; Cai, S.; Shen, K. E.; Sang, Z. Y.; Xie, D. L.; Sun, J. Y.; Xiong, K. Z.; Guo, J. Z.; Sun, X. H. Dual carbon-confined Na2MnPO4F nanoparticles as a superior cathode for rechargeable sodium-ion battery. Ceram. Int. 2019, 45, 19799–19807.

    CAS  Google Scholar 

  16. Shang, Y.; Li, X. X.; Song, J. J.; Huang, S. Z.; Yang, Z.; Xu, Z. J.; Yang, H. Y. Unconventional Mn vacancies in Mn-Fe Prussian blue analogs: Suppressing Jahn-Teller distortion for ultrastable sodium storage. Chem 2020, 6, 1804–1818.

    CAS  Google Scholar 

  17. Xu, C. L.; Zhao, J. M.; Wang, E. H.; Liu, X. H.; Shen, X.; Rong, X. H.; Zheng, Q.; Ren, G. X.; Zhang, N.; Liu, X. S. et al. A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion batteries. Adv. Energy Mater. 2021, 11, 2100729.

    CAS  Google Scholar 

  18. Xu, C. L.; Xiao, R. J.; Zhao, J. M.; Ding, F. X.; Yang, Y.; Rong, X. H.; Guo, X. H.; Yang, C.; Liu, H. Z.; Zhong, B. H. et al. Mn-rich phosphate cathodes for Na-ion batteries with superior rate performance. ACS Energy Lett. 2022, 7, 97–107.

    CAS  Google Scholar 

  19. Or, T.; Gourley, S. W. D.; Kaliyappan, K.; Zheng, Y.; Li, M.; Chen, Z. W. Recent progress in surface coatings for sodium-ion battery electrode materials. Electrochem. Energy Rev. 2022, 5, 20.

    CAS  PubMed Central  Google Scholar 

  20. Qian, H. M.; Ren, H. Q.; Zhang, Y.; He, X. F.; Li, W. B.; Wang, J. J.; Hu, J. H.; Yang, H.; Sari, H. M. K.; Chen, Y. et al. Surface doping vs. bulk doping of cathode materials for lithium-ion batteries: A review. Electrochem. Energy Rev. 2022, 5, 2.

    CAS  Google Scholar 

  21. Ghosh, S.; Barman, N.; Senguttuvan, P. Impact of Mg2+ and Al3+ substitutions on the structural and electrochemical properties of nasicon-NaxVMn0.75M0.25(PO4)3 (M = Mg and Al) cathodes for sodium-ion batteries. Small 2020, 16, 2003973.

    CAS  Google Scholar 

  22. Cai, C. C.; Hu, P.; Zhu, T.; Chen, C. M.; Hu, G. W.; Liu, Z. H.; Tian, Y.; Chen, Q.; Zhou, L.; Mai, L. Encapsulation of Na4MnV(PO4)3 in robust dual-carbon framework rendering high-energy, durable sodium storage. J. Phys. Energy 2020, 2, 025003.

    ADS  CAS  Google Scholar 

  23. Nisar, U.; Muralidharan, N.; Essehli, R.; Amin, R.; Belharouak, I. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials. Energy Storage Mater. 2021, 38, 309–328.

    Google Scholar 

  24. Zakharkin, M. V.; Drozhzhin, O. A.; Tereshchenko, I. V.; Chernyshov, D.; Abakumov, A. M.; Antipov, E. V.; Stevenson, K. J. Enhancing Na+ extraction limit through high voltage activation of the NASICON-Type Na4MnV(PO4)3 cathode. ACS Appl. Energy Mater. 2018, 1, 5842–5846.

    CAS  Google Scholar 

  25. Zhang, W.; Zhang, Z. A.; Li, H. X.; Wang, D. P.; Wang, T. S.; Sun, X. W.; Zheng, J. Q.; Lai, Y. Q. Engineering 3D well-interconnected Na4MnV(PO4)3 facilitates ultrafast and ultrastable sodium storage. ACS Appl. Mater. Interfaces 2019, 11, 35746–35754.

    CAS  PubMed  Google Scholar 

  26. Ramesh Kumar, P.; Kheireddine, A.; Nisar, U.; Shakoor, R. A.; Essehli, R.; Amin, R.; Belharouak, I. Na4MnV(PO4)3-rGO as advanced cathode for aqueous and non-aqueous sodium ion batteries. J. Power Sources 2019, 429, 149–155.

    CAS  Google Scholar 

  27. Buryak, N. S.; Anishchenko, D. V.; Levin, E. E.; Ryazantsev, S. V.; Martin-Diaconescu, V.; Zakharkin, M. V.; Nikitina, V. A.; Antipov, E. V. High-voltage structural evolution and its kinetic consequences for the Na4MnV(PO4)3 sodium-ion battery cathode material. J. Power Sources 2022, 518, 230769.

    CAS  Google Scholar 

  28. Liu, X. H.; Tang, L. B.; Li, Z.; Zhang, J. H.; Xu, Q. J.; Liu, H. M.; Wang, Y. G.; Xia, Y. Y.; Cao, Y. L.; Ai, X. P. An Al-doped high voltage cathode of Na4Co3(PO4)2P2O7 enabling highly stable 4 V full sodium-ion batteries. J. Mater. Chem. A 2019, 7, 18940–18949.

    CAS  Google Scholar 

  29. Li, Y.; Shi, Q. H.; Yin, X. P.; Wang, J.; Wang, J.; Zhao, Y. F.; Zhang, J. J. Construction nasicon-type NaTi2(PO4)3 nanoshell on the surface of P2-type Na0.67Co0.2Mn0.8O2 cathode for superior room/low-temperature sodium storage. Chem. Eng. J. 2020, 402, 126181.

    CAS  Google Scholar 

  30. Cui, G. J.; Dong, Q. Y.; Wang, Z. Z.; Liao, X. Z.; Yuan, S. Q.; Jiang, M. D.; Shen, Y. B.; Wang, H.; Che, H. Y.; He, Y. S. et al. Achieving highly reversible and fast sodium storage of Na4VMn(PO4)3/C-rGO composite with low-fraction rGO via spray-drying technique. Nano Energy 2021, 89, 106462.

    CAS  Google Scholar 

  31. Zhu, T.; Hu, P.; Wang, X. P.; Liu, Z. H.; Luo, W.; Owusu, K. A.; Cao, W. W.; Shi, C. W.; Li, J. T.; Zhou, L. et al. Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries. Adv. Energy Mater. 2019, 9, 1803436.

    Google Scholar 

  32. Li, H. X.; Chen, X. B.; Jin, T.; Bao, W. Z.; Zhang, Z. A.; Jiao, L. F. Robust graphene layer modified Na2MnP2O7 as a durable high-rate and high energy cathode for Na-ion batteries. Energy Storage Mater. 2019, 16, 383–390.

    Google Scholar 

  33. Zhou, Y.; Shao, X. J.; Lam, K. H.; Zheng, Y.; Zhao, L. Z.; Wang, K. D.; Zhao, J. Z.; Chen, F. M.; Hou, X. H. Symmetric sodium-ion battery based on dual-electron reactions of nasicon-structured Na3MnTi(PO4)3 material. ACS Appl. Mater. Interfaces 2020, 12, 30328–30335.

    CAS  PubMed  Google Scholar 

  34. Ren, W.; Qin, M. L.; Zhou, Y. F.; Zhou, H.; Zhu, J.; Pan, J. N.; Zhou, J.; Cao, X. X.; Liang, S. Q. Electrospun Na4Fe3(PO4)2(P2O7) nanofibers as free-standing cathodes for ultralong-life and high-rate sodium-ion batteries. Energy Storage Mater. 2023, 54, 7761783.

    Google Scholar 

  35. Pan, W. L.; Guan, W. H.; Liu, S. Y.; Xu, B. B.; Liang, C.; Pan, H. G.; Yan, M.; Jiang, Y. Z. Na2Fe(SO4)2: An anhydrous 3.6 V, low-cost and good-safety cathode for a rechargeable sodium-ion battery. J. Mater. Chem. A 2019, 7, 13197–13204.

    CAS  Google Scholar 

  36. Dong, J. M.; Xiao, J. C.; Yu, Y. F.; Wang, J. R.; Chen, F.; Wang, S.; Zhang, L. M.; Ren, N. Q.; Pan, B. C.; Chen, C. H. Electronic structure regulation of Na2FePO4F cathode toward superior high-rate and high-temperature sodium-ion batteries. Energy Storage Mater. 2022, 45, 851.860.

    Google Scholar 

  37. Zhao, A. L.; Liu, C. Y.; Ji, F. J.; Zhang, S. H.; Fan, H. M.; Ni, W. H.; Fang, Y. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Revealing the phase evolution in Na4FexP4O12+x (2 ≤ x ≤ 4) cathode materials. ACS Energy Lett. 2023, 8, 753–761.

    CAS  Google Scholar 

  38. Liu, Y.; Wu, X. Y.; Moeez, A.; Peng, Z.; Xia, Y. Y.; Zhao, D. Y.; Liu, J.; Li, W. Na-rich Na3V2(PO4)3 cathodes for long cycling rechargeable sodium full cells. Adv. Energy Mater. 2023, 13, 2203283.

    CAS  Google Scholar 

  39. Hou, J. R.; Hadouchi, M.; Sui, L.; Liu, J.; Tang, M. X.; Kan, W. H.; Avdeev, M.; Zhong, G. M.; Liao, Y. K.; Lai, Y. H. et al. Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution. Energy Storage Mater. 2021, 42, 307–316.

    Google Scholar 

  40. Senthilkumar, B.; Murugesan, C.; Sharma, L.; Lochab, S.; Barpanda, P. An overview of mixed polyanionic cathode materials for sodium-ion batteries. Small Methods 2019, 3, 1800253.

    CAS  Google Scholar 

  41. Zhang, J.; Liu, Y. C.; Zhao, X. D.; He, L. H.; Liu, H.; Song, Y. Z.; Sun, S. D.; Li, Q.; Xing, X. R.; Chen, J. A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries. Adv. Mater. 2020, 32, 1906348.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC) (Nos. 52102239, 52072112, and 51672069), the Foundation of Henan Educational Committee (No. 22A140003), the Zhongyuan Thousand Talents Program of Henan Province (No. ZYQR201912155), the Henan Overseas Expertise Introduction Center for Discipline Innovation (No. CXJD2021003), the Program for Innovative Research Team in Science and Technology in the University of Henan Province (No. 20IRTSTHN012), and the Science and Technology Development Project of Henan Province (No. 202102210105).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyu Li or Ying Bai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C., Li, S. & Bai, Y. High-lattice-adapted surface modifying Na4MnV(PO4)3 for better sodium storage. Nano Res. 17, 2728–2735 (2024). https://doi.org/10.1007/s12274-023-6164-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6164-2

Keywords

Navigation