Skip to main content
Log in

Multiresponsive, easy-reversible, and dual-visual Pt(II) salt nanostructures for advanced anti-counterfeiting application

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Smart materials that integrate multi-stimuli response, full reversibility, and dual-visual read-out channel are highly desired for anti-counterfeiting and information encryption applications. Herein, we developed a multiresponsive perchlorate terpyridyl Pt(II) nano complex which could undergo fully reversible conversion between three forms stimulated by water or formaldehyde molecule due to the extent of Pt–Pt interaction. Meanwhile, a dual-visual channel, i.e., the colorimetric channel changed from yellow to orange or red and the corresponding luminescent channel from orange to orange-red or red, has also been found. The weak and equivalent strength of ion-dipole interaction and hydrogen bond that generated between formaldehyde/water and Pt(II) salt result in the easy-control reversibility between the three forms. Furthermore, by introducing different polymer matrices, 1Cl·ClO4@PMMA (1Cl·ClO4: [Pt(tpy)Cl]·ClO4, tpy: 2,2′:6′,2″-terpyridine), PMMA: poly(methyl methacrylate)) and 1Cl·ClO4@PVA (PVA: polyvinyl alcohol) are successfully constructed, which exhibit different reversible behaviors since the PMMA and PVA matrix exert different influences on the strength of hydrogen-bond. Those smart Pt(II) salt nanostructures present great potential for high-security-level anticounterfeiting application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, X.; Cheng, Y. H.; You, J. X.; Zhang, J. M.; Wang, Y. R.; Zhang, J. Irreversible humidity-responsive phosphorescence materials from cellulose for advanced anti-counterfeiting and environmental monitoring. ACS Appl. Mater. Interfaces 2022, 14, 16582–16591.

    Article  CAS  Google Scholar 

  2. He, X. Y.; Zhang, J. Y.; Liu, X. Y.; Jin, Z. W.; Lam, J. W. Y.; Tang, B. Z. A multiresponsive functional AIEgen for spatiotemporal pattern control and all-round information encryption. Angew. Chem., Int. Ed. 2023, 62, e202300353.

    Article  CAS  Google Scholar 

  3. Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: Recent advances and future challenges. ACS Nano 2020, 14, 14417–14492.

    Article  CAS  Google Scholar 

  4. Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.

    Article  CAS  Google Scholar 

  5. Sun, Y. J.; Lou, D. Y.; Liu, W.; Zheng, Z. K.; Chen, X. D. SERS labels for optical anticounterfeiting: Structure, fabrication, and performance. Adv. Opt. Mater. 2023, 11, 2201549.

    Article  CAS  Google Scholar 

  6. Wang, Z. P.; Jiang, L.; Li, X. W.; Li, B. H.; Zhou, S. P.; Xu, Z. T.; Huang, L. L. Thermally reconfigurable hologram fabricated by spatially modulated femtosecond pulses on a heat-shrinkable shape memory polymer for holographic multiplexing. ACS Appl. Mater. Interfaces 2021, 13, 51736–51745.

    Article  CAS  Google Scholar 

  7. Wang, X. C.; Kuang, J. R.; Wu, P. C.; Zong, Z.; Li, Z. X.; Wang, H.; Li, J. L.; Dai, P. L.; Zhang, K. Y.; Liu, S. J. et al. Manipulating electroluminochromism behavior of viologen-substituted iridium(III) complexes through ligand engineering for information display and encryption. Adv. Mater. 2022, 34, 2107013.

    Article  CAS  Google Scholar 

  8. Ai, Y. Y.; Fei, Y. X.; Shu, Z.; Zhu, Y. H.; Liu, J. Q.; Li, Y. G. Visible-light-controlled ternary chiroptical switches with high-performance circularly polarized luminescence for advanced optical information storage and anti-counterfeiting materials. Chem. Eng. J. 2022, 450, 138390.

    Article  CAS  Google Scholar 

  9. Ding, L. J.; Wang, X. D. Luminescent oxygen-sensitive ink to produce highly secured anticounterfeiting labels by inkjet printing. J. Am. Chem. Soc. 2020, 142, 13558–13564.

    Article  CAS  Google Scholar 

  10. Nie, X. L.; Wu, S. L.; Lv, P. F.; Ke, H. Z.; Huang, F. L.; Wei, Q. F. Chameleon-inspired iridescent structural color textiles with reversible multiple stimulus-responsive functions. Chem. Eng. J. 2022, 433, 134410.

    Article  CAS  Google Scholar 

  11. Sun, Z. Y.; Yang, J. X.; Huai, L. W.; Wang, W. X.; Ma, Z. D.; Sang, J. K.; Zhang, J. C.; Li, H. H.; Ci, Z.; Wang, Y. H. Spy must be spotted: A multistimuli-responsive luminescent material for dynamic multimodal anticounterfeiting and encryption. ACS Appl. Mater. Interfaces 2018, 10, 21451–21457.

    Article  CAS  Google Scholar 

  12. Jia, H.; Teng, Y. Y.; Li, N.; Li, D. G.; Dong, Y. H.; Zhang, D.; Liu, Z. H.; Zhao, D.; Guo, X. Y.; Di, W. H. et al. Dual stimuli-responsive inks based on orthogonal upconversion three-primary-color luminescence for advanced anticounterfeiting applications. ACS Mater. Lett. 2022, 4, 1306–1313.

    Article  CAS  Google Scholar 

  13. Zhao, Q.; Xu, W. J.; Sun, H. B.; Yang, J. G.; Zhang, K. Y.; Liu, S. J.; Ma, Y.; Huang, W. Tunable electrochromic luminescence of iridium(III) complexes for information self-encryption and anti-counterfeiting. Adv. Opt. Mater. 2016, 4, 1167–1173.

    Article  CAS  Google Scholar 

  14. Lin, Z.; Wang, H.; Yu, M. L.; Guo, X.; Zhang, C. H.; Deng, H. T.; Zhang, P. S.; Chen, S.; Zeng, R. J.; Cui, J. X. et al. Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging. J. Mater. Chem. C 2019, 7, 11515–11521.

    Article  CAS  Google Scholar 

  15. Abdollahi, A.; Sahandi-Zangabad, K.; Roghani-Mamaqani, H. Rewritable anticounterfeiting polymer inks based on functionalized stimuli-responsive latex particles containing spiropyran photoswitches: Reversible photopatterning and security marking. ACS Appl. Mater. Interfaces 2018, 10, 39279–39292.

    Article  CAS  Google Scholar 

  16. Song, Z. P.; Lin, T. R.; Lin, L. H.; Lin, S.; Fu, F. F.; Wang, X. C.; Guo, L. Q. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem., Int. Ed. 2016, 128, 2823–2827.

    Article  Google Scholar 

  17. Zhao, J. W.; Zheng, Y. Y.; Pang, Y. Y.; Chen, J.; Zhang, Z. Y.; Xi, F. N.; Chen, P. Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption. J. Colloid Interface Sci. 2020, 579, 307–314.

    Article  CAS  Google Scholar 

  18. Zhou, L.; Zhao, A. D.; Wang, Z. Z.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Ionic liquid-assisted synthesis of multicolor luminescent silica nanodots and their use as anticounterfeiting ink. ACS Appl. Mater. Interfaces. 2015, 7, 2905–2911.

    Article  CAS  Google Scholar 

  19. Li, Z. Q.; Wang, G. N.; Ye, Y. X.; Li, B.; Li, H. R.; Chen, B. L. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew. Chem., Int. Ed. 2019, 58, 18025–18031.

    Article  CAS  Google Scholar 

  20. Zhang, C. Y.; Wang, B.; Li, W. B.; Huang, S. Q.; Kong, L.; Li, Z. C.; Li, L. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat. Commun. 2017, 8, 1138.

    Article  Google Scholar 

  21. Sun, C.; Su, S. J.; Gao, Z. Y.; Liu, H. X.; Wu, H.; Shen, X. Y.; Bi, W. G. Stimuli-responsive inks based on perovskite quantum dots for advanced full-color information encryption and decryption. ACS Appl. Mater. Interfaces 2019, 11, 8210–8216.

    Article  CAS  Google Scholar 

  22. Liu, X. W.; Wang, Y.; Li, X. Y.; Yi, Z. G.; Deng, R. R.; Liang, L. L.; Xie, X. J.; Loong, D. T. B.; Song, S. Y.; Fan, D. Y. et al. Binary temporal upconversion codes of Mn2+ activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 2017, 8, 899.

    Article  Google Scholar 

  23. Liu, J.; Kaczmarek, A. M.; Van Deun, R. Advances in tailoring luminescent rare-earth mixed inorganic materials. Chem. Soc. Rev. 2018, 47, 7225–7238.

    Article  CAS  Google Scholar 

  24. Meng, Z. P.; Wu, S. L.; Tang, B. T.; Ma, W.; Zhang, S. F. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting. Nanoscale 2018, 10, 14755–14762.

    Article  CAS  Google Scholar 

  25. Anitha, O.; Mathivanan, M.; Tharmalingam, B.; Thiruppathiraj, T.; Ghorai, S.; Natarajan, R.; Thiagarajan, V.; Lakshmipathi, S.; Murugesapandian, B. Multi-stimuli responsiveness of pyrimidine bishydrazone: AIE, tuneable luminescence, white light emission, mechanochromism, acidochromism and its anticounterfeiting applications. Dyes Pigm. 2023, 212, 111091.

    Article  CAS  Google Scholar 

  26. Dubey, C.; Shruti, N.; Singh, S. K.; Singh, A. K. Halide perovskite nanocrystals and lanthanide complex-based bi-luminescent security ink for multilevel static-dynamic anticounterfeiting. Mater. Res. Bull. 2022, 155, 111977.

    Article  CAS  Google Scholar 

  27. Zuo, M. Z.; Qian, W. R.; Li, T. H.; Hu, X. Y.; Jiang, J. L.; Wang, L. Y. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl. Mater. Interfaces 2018, 10, 39214–39221.

    Article  CAS  Google Scholar 

  28. Zhang, H. W.; Li, Q. Y.; Yang, Y. B.; Ji, X. F.; Sessler, J. L. Unlocking chemically encrypted information using three types of external stimuli. J. Am. Chem. Soc. 2021, 143, 18635–18642.

    Article  CAS  Google Scholar 

  29. Jiang, J. W.; Zhang, P. S.; Liu, L.; Li, Y. Q.; Zhang, Y. B.; Wu, T. C.; Xie, H. L.; Zhang, C. H.; Cui, J. X.; Chen, J. Dual photochromics-contained photoswitchable multistate fluorescent polymers for advanced optical data storage, encryption, and photowritable pattern. Chem. Eng. J. 2021, 425, 131557.

    Article  CAS  Google Scholar 

  30. Wang, Z. R.; Yu, F.; Chen, W. Q.; Wang, J. F.; Liu, J. Y.; Yao, C. J.; Zhao, J. F.; Dong, H. L.; Hu, W. P.; Zhang, Q. C. Rational control of charge transfer excitons toward high-contrast reversible mechanoresponsive luminescent switching. Angew. Chem., Int. Ed. 2020, 59, 17580–17586.

    Article  CAS  Google Scholar 

  31. Zhu, S. Q.; Hu, J. Y.; Zhai, S. L.; Wang, Y. T.; Xu, Z. C.; Liu, R.; Zhu, H. J. AIPE-active Pt(II) complexes with a tunable triplet excited state:Design, mechanochromism and application in anti-counterfeiting. Inorg. Chem. Front. 2020, 7, 4677–4686.

    Article  CAS  Google Scholar 

  32. Wong, K. M. C.; Yam, V. W. W. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: Modulation of photophysical properties through aggregation behavior. Acc. Chem. Res. 2011, 44, 424–434.

    Article  CAS  Google Scholar 

  33. Wong, K.; Yam, V. Luminescence platinum(II) terpyridyl complexes-From fundamental studies to sensory functions. Coord. Chem. Rev. 2007, 251, 2477–2488.

    Article  CAS  Google Scholar 

  34. Chang, X. M.; Zhou, Z. X.; Shang, C. D.; Wang, G.; Wang, Z. L.; Qi, Y. Y.; Li, Z. Y.; Wang, H.; Cao, L. P.; Li, X. P. et al. Coordination-driven self-assembled metallacycles incorporating pyrene: Fluorescence mutability, tunability, and aromatic amine sensing. J. Am. Chem. Soc. 2019, 141, 1757–1765.

    Article  CAS  Google Scholar 

  35. Hu, Y. C.; Chan, K. H. Y.; Chung, C. Y. S.; Yam, V. W. W. Reversible thermo-responsive luminescent metallo-supramolecular triblock copolymers based on platinum(II) terpyridyl chromophores with unusual aggregation behaviour and red-near-infrared (NIR) emission upon heating. Dalton Trans. 2011, 40, 12228–12234.

    Article  CAS  Google Scholar 

  36. Jiang, B.; Zhang, J.; Ma, J. Q.; Zheng, W.; Chen, L. J.; Sun, B.; Li, C.; Hu, B. W.; Tan, H. W.; Li, X. P. et al. Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J. Am. Chem. Soc. 2016, 138, 738–741.

    Article  CAS  Google Scholar 

  37. Su, Z.; Li, Y. S.; Li, J. G.; Li, K.; Dou, X. C. Ultrasensitive dual-mode visualization of perchlorate in water, soil and air boosted by close and stable Pt–Pt packing endowed low-energy absorption and emission. J. Mater. Chem. A 2022, 10, 8195–8207.

    Article  CAS  Google Scholar 

  38. Su, Z.; Li, Y. S.; Li, J. G.; Dou, X. C. Ultrasensitive luminescent turn-on detection of perchlorate particulates by triggering supramolecular self-assembly of platinum(II) complex in hydrogel matrix. Sens. Actuat. B: Chem. 2021, 336, 129728.

    Article  CAS  Google Scholar 

  39. Zhang, J. Y.; Xu, S.; Wang, Z. J.; Xue, P. R.; Wang, W. J.; Zhang, L. Y.; Shi, Y. Q.; Huang, W.; Chen, R. F. Stimuli-responsive deep-blue organic ultralong phosphorescence with lifetime over 5 s for reversible water-jet anti-counterfeiting printing. Angew. Chem., Int. Ed. 2021, 60, 17094–17101.

    Article  Google Scholar 

  40. Li, J. G.; Chen, K. X.; Wei, J.; Ma, Y.; Zhou, R. Y.; Liu, S. J.; Zhao, Q.; Wong, W. Y. Reversible on-off switching of excitation-wavelength-dependent emission of a phosphorescent soft salt based on platinum(II) complexes. J. Am. Chem. Soc. 2021, 143, 18317–18324.

    Article  CAS  Google Scholar 

  41. Bailey, J. A.; Hill, M. G.; Marsh, R. E.; Miskowski, V. M.; Schaefer, W. P.; Gray, H. B. Electronic spectroscopy of chloro(terpyridine)platinum(II). Inorg. Chem. 1995, 34, 4591–4599.

    Article  CAS  Google Scholar 

  42. Pearson, R. G.; Gray, H. B.; Basolo, F. Mechanism of substitution reactions of complex ions. XVI.1exchange reactions of platinum(II) complexes in various solvents. J. Am. Chem. Soc. 1960, 82, 787–792.

    Article  CAS  Google Scholar 

  43. Taylor, S. D.; Norton, A. E.; Hart, R. T.; Abdolmaleki, M. K.; Krause, J. A.; Connick, W. B. Between red and yellow: Evidence of intermediates in a vapochromic Pt(II) salt. Chem. Commun. 2013, 49, 9161–9163.

    Article  CAS  Google Scholar 

  44. Norton, A. E.; Abdolmaleki, M. K.; Zhao, D. L.; Taylor, S. D.; Kennedy, S. R.; Ball, T. D.; Bovee, M. O.; Connick, W. B.; Chatterjee, S. Vapoluminescence hysteresis in a platinum(II) salt-based humidity sensor: Mapping the vapochromic response to water vapor. Sens. Actuat. B: Chem. 2022, 359, 131502.

    Article  CAS  Google Scholar 

  45. Liu, X. W.; Ji, Q.; Hu, Q. Y.; Li, C.; Chen, M. L.; Sun, J.; Wang, Y.; Sun, Q.; Geng, B. Y. Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anticounterfeiting. ACS Appl. Mater. Interfaces 2019, 11, 30146–30153.

    Article  CAS  Google Scholar 

  46. Liu, Y. Z.; Liang, S. F.; Yuan, C. R.; Best, A.; Kappl, M.; Koynov, K.; Butt, H. J.; Wu, S. Fabrication of anticounterfeiting nanocomposites with multiple security features via integration of a photoresponsive polymer and upconverting nanoparticles. Adv. Funct. Mater. 2021, 31, 2103908.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Major Science and Technology Project of Xinjiang (No. 2022A01006-3), Science Foundation for Outstanding Young People of Xinjiang (No. 2022D01E40), Youth Science Foundation of Xinjiang (No. 2022D01C69), and Tianchi Doctoral program (Nos. TCBS202130 and 51052300573).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyun Hu or Qingqing Guan.

Electronic Supplementary Material

12274_2023_6032_MOESM1_ESM.pdf

Multiresponsive, easy-reversible, and dual-visual Pt(II) salt nanostructures for advanced anti-counterfeiting application

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Li, D., Zhang, L. et al. Multiresponsive, easy-reversible, and dual-visual Pt(II) salt nanostructures for advanced anti-counterfeiting application. Nano Res. 17, 372–381 (2024). https://doi.org/10.1007/s12274-023-6032-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6032-0

Keywords

Navigation