Skip to main content
Log in

Responsive hyperbranched poly(formyl-1,2,3-triazole)s toward quadruple-modal information security protection

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Secrecy has received tremendous attention in modern information society. Innovative polymer-based fluorescent materials with multiple mode emission are quite desirable to achieve multistage data security. Herein, a series of soluble and thermally stable hyperbranched poly(formyl-1,2,3-triazole)s (hb-PFTAs) with high molecular weights were facilely prepared by catalyst-free polycycloaddition of aldehyde-activated internal triyne and diazides. Functional moieties of triphenylamine and binaphthyl could be incorporated into the polymers to offer them with unique fluorescence and circular dichroism properties, respectively. By taking advantage of activated ethynyl and aldehyde groups on their peripheries and in the internal branch chains, the hb-PFTAs can undergo efficient single- and double-stage post-functionalization. More importantly, based on the remarkable fluorescence responses to hydrazine and hydrochloric acid, the hyperbranched polymers are featured with triple-mode fluorescent patterns and have been applied in quadruple-modal information encryption and storage with enhanced security and density. Collectively, this work not only enriches the structural diversity of the existing triazole-based material library, but also provides new polymeric materials for data and information security application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phan-Quang GC, Han X, Koh CSL, Sim HYF, Lay CL, Leong SX, Lee YH, Pazos-Perez N, Alvarez-Puebla RA, Ling XY. Acc Chem Res, 2019, 52: 1844–1854

    Article  CAS  PubMed  Google Scholar 

  2. Gu L, Shi H, Bian L, Gu M, Ling K, Wang X, Ma H, Cai S, Ning W, Fu L, Wang H, Wang S, Gao Y, Yao W, Huo F, Tao Y, An Z, Liu X, Huang W. Nat Photonics, 2019, 13: 406–411

    Article  CAS  Google Scholar 

  3. Hu Z, Comeras JMML, Park H, Tang J, Afzali A, Tulevski GS, Hannon JB, Liehr M, Han SJ. Nat Nanotechol, 2016, 11: 559–565

    Article  CAS  Google Scholar 

  4. Boukis AC, Reiter K, Frölich M, Hofheinz D, Meier MAR. Nat Commun, 2018, 9: 1439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Arppe R, Sørensen TJ. Nat Rev Chem, 2017, 1: 0031

    Article  CAS  Google Scholar 

  6. Kumar P, Singh S, Gupta BK. Nanoscale, 2016, 8: 14297–14340

    Article  CAS  PubMed  Google Scholar 

  7. Battistelli G, Cantelli A, Guidetti G, Manzi J, Montalti M. WIREs Nanomed Nanobiotechnol, 2016, 8: 139–150

    Article  CAS  Google Scholar 

  8. Wang Y, Feng L, Wang S. Adv Funct Mater, 2019, 29: 1806818

    Article  CAS  Google Scholar 

  9. Huang T, Liu H, Bang Y, Wang Y, Liang Y, Wang X, Zhang Y, Xie S, Zeng Z, Tang BZ. Sci China Chem, 2020, 63: 1659–1665

    Article  CAS  Google Scholar 

  10. Yu X, Zhang H, Yu J. Aggregate, 2021, 2: 20–34

    Article  Google Scholar 

  11. Long P, Feng Y, Cao C, Li Y, Han J, Li S, Peng C, Li Z, Feng W. Adv Funct Mater, 2018, 28: 1800791

    Article  CAS  Google Scholar 

  12. Zhang C, Wang B, Li W, Huang S, Kong L, Li Z, Li L. Nat Commun, 2017, 8: 1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yang J, Ren Z, Xie Z, Liu Y, Wang C, Xie Y, Peng Q, Xu B, Tian W, Zhang F, Chi Z, Li Q, Li Z. Angew Chem Int Ed, 2017, 56: 880–884

    Article  CAS  Google Scholar 

  14. Song Z, Lin T, Lin L, Lin S, Fu F, Wang X, Guo L. Angew Chem Int Ed, 2016, 55: 2773–2777

    Article  CAS  Google Scholar 

  15. Zhang L, Zhao WL, Li M, Lu HY, Chen CF. Acta Chim Sin, 2020, 78: 1030–1040

    Article  CAS  Google Scholar 

  16. Yoon B, Ham DY, Yarimaga O, An H, Lee CW, Kim JM. Adv Mater, 2011, 23: 5492–5497

    Article  CAS  PubMed  Google Scholar 

  17. Qi Q, Li C, Liu X, Jiang S, Xu Z, Lee R, Zhu M, Xu B, Tian W. J Am Chem Soc, 2017, 139: 16036–16039

    Article  CAS  PubMed  Google Scholar 

  18. Wu H, Chen Y, Liu Y. Adv Mater, 2017, 29: 1605271

    Article  CAS  Google Scholar 

  19. She P, Ma Y, Qin Y, Xie M, Li F, Liu S, Huang W, Zhao Q. Matter, 2019, 1: 1644–1655

    Article  Google Scholar 

  20. Ma Y, Yu Y, She P, Lu J, Liu S, Huang W, Zhao Q. Sci Adv, 2020, 6: eaaz2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xu L, Chen J, Song J, Li J, Xue J, Dong Y, Cai B, Shan Q, Han B, Zeng H. ACS Appl Mater Interfaces, 2017, 9: 26556–26564

    Article  CAS  PubMed  Google Scholar 

  22. Jiang K, Zhang L, Lu J, Xu C, Cai C, Lin H. Angew Chem Int Ed, 2016, 55: 7231–7235

    Article  CAS  Google Scholar 

  23. Jiang K, Wang Y, Cai C, Lin H. Adv Mater, 2018, 30: 1800783

    Article  CAS  Google Scholar 

  24. Qin M, Xu Y, Gao H, Han G, Cao R, Guo P, Feng W, Chen L. ACS Appl Mater Interfaces, 2019, 11: 35255–35263

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Y, Le X, Jian Y, Lu W, Zhang J, Chen T. Adv Funct Mater, 2019, 29: 1905514

    Article  CAS  Google Scholar 

  26. Song B, Wang H, Zhong Y, Chu B, Su Y, He Y. Nanoscale, 2018, 10: 1617–1621

    Article  CAS  PubMed  Google Scholar 

  27. Gao Z, Han Y, Wang F. Nat Commun, 2018, 9: 3977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Qian CG, Zhu S, Feng PJ, Chen YL, Yu JC, Tang X, Liu Y, Shen QD. ACS Appl Mater Interfaces, 2015, 7: 18581–18589

    Article  CAS  PubMed  Google Scholar 

  29. Li K, Liu B. J Mater Chem, 2012, 22: 1257–1264

    Article  CAS  Google Scholar 

  30. Minei P, Pucci A. Polym Int, 2016, 65: 609–620

    Article  CAS  Google Scholar 

  31. Qin A, Lam JWY, Tang BZ. Chem Soc Rev, 2010, 39: 2522–2544

    Article  CAS  PubMed  Google Scholar 

  32. Tasdelen MA, Kiskan B, Yagci Y. Prog Polym Sci, 2016, 52: 19–78

    Article  CAS  Google Scholar 

  33. Liu Y, Qin A, Tang BZ. Prog Polym Sci, 2018, 78: 92–138

    Article  CAS  Google Scholar 

  34. Qiu Z, Han T, Lam JWY, Tang BZ. Top Curr Chem (Z), 2017, 375: 70

    Article  CAS  Google Scholar 

  35. Huang D, Liu Y, Qin A, Tang BZ. Polym Chem, 2018, 9: 2853–2867

    Article  CAS  Google Scholar 

  36. Li B, Huang D, Qin A, Tang BZ. Macromol Rapid Commun, 2018, 39: 1800098

    Article  CAS  Google Scholar 

  37. Hema K, Sureshan KM. Acc Chem Res, 2019, 52: 3149–3163

    Article  CAS  PubMed  Google Scholar 

  38. Li B, Qin A, Tang BZ. Polym Chem, 2020, 11: 3075–3083

    Article  CAS  Google Scholar 

  39. Nadimetla DN, Al Kobaisi M, Bugde ST, Bhosale SV. Chem Rec, 2020, 20: 793–819

    Article  CAS  PubMed  Google Scholar 

  40. Song F, Zhao Z, Liu Z, Lam JWY, Tang BZ. J Mater Chem C, 2020, 8: 3284–3301

    Article  CAS  Google Scholar 

  41. Hu M, Feng HT, Yuan YX, Zheng YS, Tang BZ. Coord Chem Rev, 2020, 416: 213329

    Article  CAS  Google Scholar 

  42. Sang Y, Han J, Zhao T, Duan P, Liu M. Adv Mater, 2020, 32: 1900110

    Article  CAS  Google Scholar 

  43. Shi Y, Duan P, Huo S, Li Y, Liu M. Adv Mater, 2018, 30: 1705011

    Article  CAS  Google Scholar 

  44. Liu D. Chem J Chinese Universities, 2021, 42: 1619–1621

    Google Scholar 

  45. Di Bari L, Pescitelli G, Salvadori P. J Am Chem Soc, 1999, 121: 7998–8004

    Article  CAS  Google Scholar 

  46. Ma J, Wang Y, Li X, Yang L, Quan Y, Cheng Y. Polymer, 2018, 143: 184–189

    Article  CAS  Google Scholar 

  47. Hu Y, Zhu J, Chan KH, Wong YH. Bioorg Med Chem, 2013, 21: 547–552

    Article  CAS  PubMed  Google Scholar 

  48. Hong C, Wang X, Chen C. Macromolecules, 2019, 52: 7123–7129

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21788102, 21901075), the Natural Science Foundation of Guangdong Province (2016A030312002, 2019B030301003), and the Innovation and Technology Commission of Hong Kong (ITC-CNERC14S01). Li B is thankful for support from the China Postdoctoral Science Foundation (2019M662889).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjun Qin or Ben Zhong Tang.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, Z., You, K. et al. Responsive hyperbranched poly(formyl-1,2,3-triazole)s toward quadruple-modal information security protection. Sci. China Chem. 65, 771–777 (2022). https://doi.org/10.1007/s11426-021-1192-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-021-1192-5

Keywords

Navigation