Skip to main content
Log in

Anion-derived solid electrolyte interphase realized in usual-concentration electrolyte for Li metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Constructing anion-derived solid electrolyte interphase (SEI) by recruiting anions into the solvation sheath of Li+ is extremely conducive to restrain the dendrite growth of Li metal anode. However, the presence of anions in the solvation sheath of Li+ is severely hindered by the solvents with strong coordinating ability in conventional electrolyte. Herein, we boost the content of anions in the primary solvation sheath of Li+ by employing a solvent with low donor number, 2-methyltetrahydrofuran, inducing an anion-derived SEI. As a result, the Li∥Cu cells show a high average Coulombic efficiency (> 99%) over 500 cycles and the Li∥LiFePO4 cells under a low negative/positive capacity ratio of 2:1 exhibit an impressive capacity retention of 90% after 100 cycles. This work provides insights on constructing stable anion-derived SEI and offers guidance in designing electrolytes for stable Li metal batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hao, Z. M.; Zhang, Y. F.; Hao, Z. K.; Li, G.; Lu, Y.; Jin, S.; Yang, G. J.; Zhang, S. H.; Yan, Z. H.; Zhao, Q. et al. Metal anodes with ultrahigh reversibility enabled by the closest packing crystallography for sustainable batteries. Adv. Mater. 2023, 35, 2209985.

    CAS  Google Scholar 

  2. Zhao, Q.; Stalin, S.; Archer, L. A. Stabilizing metal battery anodes through the design of solid electrolyte interphases. Joule 2021, 5, 1119–1142.

    CAS  Google Scholar 

  3. Cao, W. Z.; Li, Q.; Yu, X. Q.; Li, H. Controlling Li deposition below the interface. eScience 2022, 2, 47–78.

    Google Scholar 

  4. Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.

    CAS  Google Scholar 

  5. Zheng, J. X.; Kim, M. S.; Tu, Z. Y.; Choudhury, S.; Tang, T.; Archer, L. A. Regulating electrodeposition morphology of lithium: Towards commercially relevant secondary Li metal batteries. Chem. Soc. Rev. 2020, 49, 2701–2750.

    CAS  Google Scholar 

  6. Liu, H.; Sun, X.; Cheng, X. B.; Guo, C.; Yu, F.; Bao, W. Z.; Wang, T.; Li, J. F.; Zhang, Q. Working principles of lithium metal anode in pouch cells. Adv. Energy Mater. 2022, 12, 2202518.

    CAS  Google Scholar 

  7. Tikekar, M. D.; Choudhury, S.; Tu, Z. Y.; Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 2016, 1, 16114.

    CAS  Google Scholar 

  8. Zhang, J. M.; Zeng, Y. P.; Li, Q. P.; Tang, Z.; Sun, D.; Huang, D.; Zhao, L.; Tang, Y. G.; Wang, H. Y. Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries. Energy Storage Mater. 2023, 54, 440–449.

    Google Scholar 

  9. Zhang, J. M.; Li, Q. P.; Zeng, Y. P.; Tang, Z.; Sun, D.; Huang, D.; Peng, Z. G.; Tang, Y. G.; Wang, H. Y. Non-flammable ultralow concentration mixed ether electrolyte for advanced lithium metal batteries. Energy Storage Mater. 2022, 51, 660–670.

    Google Scholar 

  10. Yao, Y. X.; Chen, X.; Yan, C.; Zhang, X. Q.; Cai, W. L.; Huang, J. Q.; Zhang, Q. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte. Angew. Chem., Int. Ed. 2021, 60, 4090–4097.

    CAS  Google Scholar 

  11. Wang, Z. X.; Qi, F. L.; Yin, L. C.; Shi, Y.; Sun, C. G.; An, B. G.; Cheng, H. M.; Li, F. An anion-tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Adv. Energy Mater. 2020, 10, 1903843.

    CAS  Google Scholar 

  12. Ding, J. F.; Xu, R.; Yao, N.; Chen, X.; Xiao, Y.; Yao, Y. X.; Yan, C.; Xie, J.; Huang, J. Q. Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 11442–11447.

    CAS  Google Scholar 

  13. Yuan, S. Y.; Kong, T. Y.; Zhang, Y. Y.; Dong, P.; Zhang, Y. J.; Dong, X. L.; Wang, Y. G.; Xia, Y. Y. Advanced electrolyte design for high-energy-density Li-metal batteries under practical conditions. Angew. Chem., Int. Ed. 2021, 60, 25624–25638.

    CAS  Google Scholar 

  14. Yang, G. J.; Li, Y. J.; Liu, S.; Zhang, S. M.; Wang, Z. X.; Chen, L. Q. LiFSI to improve lithium deposition in carbonate electrolyte. Energy Storage Mater. 2019, 23, 350–357.

    Google Scholar 

  15. Wang, H. P.; Liu, J. D.; He, J.; Qi, S. H.; Wu, M. G.; Li, F.; Huang, J. D.; Huang, Y.; Ma, J. M. Pseudo-concentrated electrolytes for lithium metal batteries. eScience 2022, 2, 557–565.

    Google Scholar 

  16. Borodin, O.; Self, J.; Persson, K. A.; Wang, C. S.; Xu, K. Uncharted waters: Super-concentrated electrolytes. Joule 2020, 4, 69–100.

    CAS  Google Scholar 

  17. Pan, A. R.; Wang, Z. C.; Zhang, F. R.; Wang, L.; Xu, J. J.; Zheng, J. Y.; Hu, J. C.; Zhao, C. L.; Wu, X. D. Wide-temperature range and high safety electrolytes for high-voltage Li-metal batteries. Nano Res. 2023, 16, 8260–8268.

    CAS  Google Scholar 

  18. Zhang, Q. K.; Zhang, X. Q.; Hou, L. P.; Sun, S. Y.; Zhan, Y. X.; Liang, J. L.; Zhang, F. S.; Feng, X. N.; Li, B. Q.; Huang, J. Q. Regulating solvation structure in nonflammable amide-based electrolytes for long-cycling and safe lithium metal batteries. Adv. Energy Mater. 2022, 12, 2200139.

    CAS  Google Scholar 

  19. Ren, X. D.; Zou, L. F.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C. J.; Matthews, B. E.; Zhu, Z. H. et al. Enabling high-voltage lithium-metal batteries under practical conditions. Joule 2019, 3, 1662–1676.

    CAS  Google Scholar 

  20. Kim, M. S.; Zhang, Z. W.; Wang, J. Y.; Oyakhire, S. T.; Kim, S. C.; Yu, Z. A.; Chen, Y. L.; Boyle, D. T.; Ye, Y. S.; Huang, Z. J. et al. Revealing the multifunctions of Li3N in the suspension electrolyte for lithium metal batteries. ACS Nano 2023, 17, 3168–3180.

    CAS  Google Scholar 

  21. Wang, Q. D.; Yao, Z. P.; Zhao, C. L.; Verhallen, T.; Tabor, D. P.; Liu, M.; Ooms, F.; Kang, F.; Aspuru-Guzik, A.; Hu, Y. S. et al. Interface chemistry of an amide electrolyte for highly reversible lithium metal batteries. Nat. Commun. 2020, 11, 4188.

    Google Scholar 

  22. Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li−O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 25973–25980.

    CAS  Google Scholar 

  23. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    CAS  Google Scholar 

  24. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    CAS  Google Scholar 

  25. Harl, J.; Schimka, L.; Kresse, G. Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys. Rev. B 2010, 81, 115126.

    Google Scholar 

  26. Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

    CAS  Google Scholar 

  27. Johnson, L.; Li, C. M.; Liu, Z.; Chen, Y. H.; Freunberger, S. A.; Ashok, P. C.; Praveen, B. B.; Dholakia, K.; Tarascon, J. M.; Bruce, P. G. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li−O2 batteries. Nat. Chem. 2014, 6, 1091–1099.

    CAS  Google Scholar 

  28. Erlich, R. H.; Popov, A. I. Spectroscopic studies of ionic solvation. X. Study of the solvation of sodium ions in nonaqueous solvents by sodium-23 nuclear magnetic resonance. J. Am. Chem. Soc. 1971, 93, 5620–5623.

    CAS  Google Scholar 

  29. Ko, S.; Obukata, T.; Shimada, T.; Takenaka, N.; Nakayama, M.; Yamada, A.; Yamada, Y. Electrode potential influences the reversibility of lithium-metal anodes. Nat. Energy 2022, 7, 1217–1224.

    CAS  Google Scholar 

  30. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.

    CAS  Google Scholar 

  31. Zhou, X. Z.; Zhang, Q.; Zhu, Z.; Cai, Y. C.; Li, H. X.; Li, F. J. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem., Int. Ed. 2022, 61, e202205045.

    CAS  Google Scholar 

  32. Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li−S batteries. Nat. Energy 2018, 3, 783–791.

    CAS  Google Scholar 

  33. Bogle, X.; Vazquez, R.; Greenbaum, S.; von Wald Cresce, A.; Xu, K. Understanding Li+-solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. J. Phys. Chem. Lett. 2013, 4, 1664–1648.

    CAS  Google Scholar 

  34. Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

    CAS  Google Scholar 

  35. Ma, T.; Ni, Y. X.; Wang, Q. R.; Zhang, W. J.; Jin, S.; Zheng, S. B.; Yang, X.; Hou, Y. P.; Tao, Z. L.; Chen, J. Optimize lithium deposition at low temperature by weakly solvating power solvent. Angew. Chem., Int. Ed. 2022, 61, e202207927.

    CAS  Google Scholar 

  36. Yang, G. J.; Zhang, S. M.; Weng, S. T.; Li, X. Y.; Wang, X. F.; Wang, Z. X.; Chen, L. Q. Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 2021, 21, 5316–5323.

    CAS  Google Scholar 

  37. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

    CAS  Google Scholar 

  38. Cao, X.; Ren, X. D.; Zou, L. F.; Engelhard, M. H.; Huang, W.; Wang, H. S.; Matthews, B. E.; Lee, H.; Niu, C. J.; Arey, B. W. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 2019, 4, 796–805.

    CAS  Google Scholar 

  39. Zhang, Q.; Lu, Y. Y.; Miao, L. C.; Zhao, Q.; Xia, K. X.; Liang, J.; Chou, S. L.; Chen, J. An alternative to lithium metal anodes: Non-dendritic and highly reversible sodium metal anodes for Li−Na hybrid batteries. Angew. Chem., Int. Ed. 2018, 57, 14796–14800.

    CAS  Google Scholar 

  40. Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

    Google Scholar 

  41. Xu, R.; Ding, J. F.; Ma, X. X.; Yan, C.; Yao, Y. X.; Huang, J. Q. Designing and demystifying the lithium metal interface toward highly reversible batteries. Adv. Mater. 2021, 33, 2105962.

    CAS  Google Scholar 

  42. Zhang, J. M.; Li, Q. P.; Zeng, Y. P.; Tang, Z.; Sun, D.; Huang, D.; Tang, Y. G.; Wang, H. Y. Weakly solvating cyclic ether electrolyte for high-voltage lithium metal batteries. ACS Energy Lett. 2023, 8, 1752–1761.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2022YFB2402200), the National Natural Science Foundation of China (Nos. 22121005, 22020102002, and 21835004), the Frontiers Science Center for New Organic Matter of Nankai University (No. 63181206), and the Haihe Laboratory of Sustainable Chemical Transformations. The calculations in this work were performed on TianHe-1(A), National Supercomputer Center in Tianjin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Li, G., Lu, Y. et al. Anion-derived solid electrolyte interphase realized in usual-concentration electrolyte for Li metal batteries. Nano Res. 16, 12647–12654 (2023). https://doi.org/10.1007/s12274-023-5937-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5937-y

Keywords

Navigation