Skip to main content
Log in

A gradient solid electrolyte interphase with high Li+ conductivity induced by bisfluoroacetamide additive for stable lithium metal batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stable Li metal anodes have become the driving factor for high-energy-density battery systems. However, uncontrolled growth of Li dendrite hinders the application of rechargeable Li metal batteries (LMBs). Here, a multifunctional electrolyte additive bisfluoroacetamide (BFA) was proposed to facilitate high-performance LMBs. The uniform and dense deposition of Li+ was achieved due to the reduced nucleation and plateau overpotential by the addition of BFA. Moreover, X-ray photoelectron spectroscopy (XPS) tests reveal a gradient solid electrolyte interface (SEI) structure on the Li metal surface. Cyclic voltammetry (CV) curves at different sweep speeds prove the formation of pseudocapacitance at the electrode-electrolyte interface, which accelerates the Li+ transport rate and protects the electrode structure. The low activation energy also indicates the ability of rapid Li+ transportation in electrolyte bulk. Therefore, the Li∥Li symmetric cells with 1.0 wt.% BFA electrolyte exhibit good cycling performance at 0.5 mA·cm−2 for over 2000 h, and Li∥LiNi0.6Co0.2Mn0.2O2 (NCM622) full cells maintain a high capacity for 200 cycles at 1 C rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, B. D.; Zheng, J. M.; Ren, X. D.; Xu, W.; Zhang, J. G. Accurate determination of Coulombic efficiency for lithium metal anodes and lithium metal batteries. Adv. Energy Mater. 2018, 8, 1702097.

    Article  Google Scholar 

  2. Chen, X. R.; Li, B. Q.; Zhu, C.; Zhang, R.; Cheng, X. B.; Huang, J. Q.; Zhang, Q. A coaxial-interweaved hybrid lithium metal anode for long-lifespan lithium metal batteries. Adv. Energy Mater. 2019, 9, 1901932.

    Article  CAS  Google Scholar 

  3. Chen, Y. N.; Fu, K.; Zhu, S. Z.; Luo, W.; Wang, Y. B.; Li, Y. J.; Hitz, E.; Yao, Y. G.; Dai, J. Q.; Wan, J. Y. et al. Reduced graphene oxide films with ultrahigh conductivity as Li-ion battery current collectors. Nano Lett. 2016, 16, 3616–3623.

    Article  CAS  Google Scholar 

  4. Su, C. C.; He, M. N.; Cai, M.; Shi, J. Y.; Amine, R.; Rago, N. D.; Guo, J. C.; Rojas, T.; Ngo, A. T.; Amine, K. Solvation-protection-enabled high-voltage electrolyte for lithium metal batteries. Nano Energy 2022, 92, 106720.

    Article  CAS  Google Scholar 

  5. Fang, C. C.; Li, J. X.; Zhang, M. H.; Zhang, Y. H.; Yang, F.; Lee, J. Z.; Lee, M. H.; Alvarado, J.; Schroeder, M. A.; Yang, Y. Y. C. et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515.

    Article  CAS  Google Scholar 

  6. Wang, H. S.; Yu, Z. A.; Kong, X.; Kim, S. C.; Boyle, D. T.; Qin, J.; Bao, Z. N.; Cui, Y. Liquid electrolyte: The nexus of practical lithium metal batteries. Joule 2022, 6, 588–616.

    Article  CAS  Google Scholar 

  7. Jang, J.; Shin, J. S.; Park, H.; Song, W. J.; Park, C. B.; Kang, J. Self-assembled protective layer by symmetric ionic liquid for long-cycling lithium-metal batteries. Adv. Energy Mater. 2022, 12, 2103955.

    Article  CAS  Google Scholar 

  8. Liu, B.; Zhang, J. G.; Xu, W. Advancing lithium metal batteries. Joule 2018, 2, 833–845.

    Article  CAS  Google Scholar 

  9. Qian, J. F.; Adams, B. D.; Zheng, J. M.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S. C.; Hu, J. Z.; Zhang, J. G. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 2016, 26, 7094–7102.

    Article  CAS  Google Scholar 

  10. Pan, R. J.; Cui, Z. H.; Yi, M.; Xie, Q.; Manthiram, A. Ethylene carbonate-free electrolytes for stable, safer high-nickel lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2103806.

    Article  CAS  Google Scholar 

  11. Shen, K.; Wang, Z.; Bi, X. X.; Ying, Y.; Zhang, D.; Jin, C. B.; Hou, G. Y.; Cao, H. Z.; Wu, L. K.; Zheng, G. Q. et al. Magnetic field-suppressed lithium dendrite growth for stable lithium-metal batteries. Adv. Energy Mater. 2019, 9, 1900260.

    Article  Google Scholar 

  12. Wang, Q. Y.; Liu, B.; Shen, Y. H.; Wu, J. K.; Zhao, Z. Q.; Zhong, C.; Hu, W. B. Confronting the challenges in lithium anodes for lithium metal batteries. Adv. Sci. (Weinh.) 2021, 8, 2101111.

    CAS  Google Scholar 

  13. Ma, L. B.; Cui, J.; Yao, S. S.; Liu, X. M.; Luo, Y. S.; Shen, X. P.; Kim, J. K. Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 2020, 27, 522–554.

    Article  Google Scholar 

  14. Wang, A. X.; Tang, S.; Kong, D. B.; Liu, S.; Chiou, K.; Zhi, L. J.; Huang, J. X.; Xia, Y. Y.; Luo, J. Y. Bending-tolerant anodes for lithium-metal batteries. Adv. Mater. 2018, 30, 1703891.

    Article  Google Scholar 

  15. Hatzell, K. B.; Chen, X. C.; Cobb, C. L.; Dasgupta, N. P.; Dixit, M. B.; Marbella, L. E.; McDowell, M. T.; Mukherjee, P. P.; Verma, A.; Viswanathan, V. et al. Challenges in lithium metal anodes for solid-state batteries. ACS Energy Lett. 2020, 5, 922–934.

    Article  CAS  Google Scholar 

  16. Feng, Y.; Zhou, L. M.; MA, H.; Wu, Z. H.; Zhao, Q.; Li, H. X.; Zhang, K.; Chen, J. Challenges and advances in wide-temperature rechargeable lithium batteries. Energy Environ. Sci. 2022, 15, 1711–1759.

    Article  CAS  Google Scholar 

  17. Ye, Y. S.; Zhao, Y. Y.; Zhao, T.; Xu, S. N.; Xu, Z. X.; Qian, J.; Wang, L. L.; Xing, Y.; Wei, L.; Li, Y. J. et al. An antipulverization and high-continuity lithium metal anode for high-energy lithium batteries. Adv. Mater. 2021, 33, 2105029.

    Article  CAS  Google Scholar 

  18. Zhu, Y. Y.; Xie, J.; Pei, A.; Liu, B. F.; Wu, Y. C.; Lin, D. C.; Li, J.; Wang, H. S.; Chen, H.; Xu, J. W. et al. Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nat. Commun. 2019, 10, 2067.

    Article  Google Scholar 

  19. Lin, L. D.; Qin, K.; Hu, Y. S.; Li, H.; Huang, X. J.; Suo, L. M.; Chen, L. Q. A better choice to achieve high volumetric energy density: Anode-free lithium metal batteries. Adv. Mater. 2022, 34, 2110323.

    Article  CAS  Google Scholar 

  20. Tang, W.; Yin, X. S.; Chen, Z. X.; Fu, W.; Loh, K. P.; Zheng, G. W. Chemically polished lithium metal anode for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 289–296.

    Article  Google Scholar 

  21. Zhu, C. N.; Sun, C. C.; Li, R. H.; Weng, S. T.; Fan, L. W.; Wang, X. F.; Chen, L. X.; Noked, M.; Fan, X. L. Anion-diluent pairing for stable high-energy Li metal batteries. ACS Energy Lett. 2022, 7, 1338–1347.

    Article  CAS  Google Scholar 

  22. Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. et al. Understanding and applying Coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

    Article  CAS  Google Scholar 

  23. Li, F.; He, J.; Liu, J. D.; Wu, M. G.; Hou, Y. Y.; Wang, H. P.; Qi, S. H.; Liu, Q. H.; Hu, J. W.; Ma, J. M. Gradient solid electrolyte interphase and lithium-ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries. Angew. Chem., Int. Ed. 2021, 60, 6600–6608.

    Article  CAS  Google Scholar 

  24. Krämer, E.; Schmitz, R.; Passerini, S.; Winter, M.; Schreiner, C. 1-Fluoropropane-2-one as SEI-forming additive for lithium-ion batteries. Electrochem. Commun. 2012, 16, 41–43.

    Article  Google Scholar 

  25. Liu, Y. J.; Tao, X. Y.; Wang, Y.; Jiang, C.; Ma, C.; Sheng, O. W.; Lu, G. X.; Lou, X. W. Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries. Science 2022, 375, 739–745.

    Article  CAS  Google Scholar 

  26. Umesh, B.; Rath, P. C.; Patra, J.; Hernandha, R. F. H.; Majumder, S. B.; Gao, X. P.; Bresser, D.; Passerini, S.; Lai, H. Z.; Chang, T. L. et al. High-Li+-fraction ether-side-chain pyrrolidinium-asymmetric imide ionic liquid electrolyte for high-energy-density Si//Ni-rich layered oxide Li-ion batteries. Chem. Eng. J. 2022, 430, 132693.

    Article  CAS  Google Scholar 

  27. Wu, F. L.; Fang, S.; Kuenzel, M.; Mullaliu, A.; Kim, J. K.; Gao, X. P.; Diemant, T.; Kim, G. T.; Passerini, S. Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries. Joule 2021, 5, 2177–2194.

    Article  CAS  Google Scholar 

  28. Qin, K. Q.; Holguin, K.; Khammadiroudbari, M.; Huang, J. H.; Kim, E. Y. S.; Hall, R.; Luo, C. Strategies in structure and electrolyte design for high-performance lithium metal batteries. Adv. Funct. Mater. 2021, 31, 2009694.

    Article  CAS  Google Scholar 

  29. Gond, R.; van Ekeren, W.; Mogensen, R.; Naylor, A. J.; Younesi, R. Non-flammable liquid electrolytes for safe batteries. Mater. Horizons 2021, 8, 2913–2928.

    Article  CAS  Google Scholar 

  30. Wang, Z. C.; Zhang, F. R.; Sun, Y. Y.; Zheng, L.; Shen, Y. B.; Fu, D. S.; Li, W. F.; Pan, A. R.; Wang, L.; Xu, J. J. et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy Mater. 2021, 11, 2003752.

    Article  CAS  Google Scholar 

  31. Fan, X. L.; Wang, C. S. High-voltage liquid electrolytes for Li batteries: Progress and perspectives. Chem. Soc. Rev. 2021, 50, 10486–10566.

    Article  CAS  Google Scholar 

  32. Wen, Z. Y.; Zhao, Z. K.; Li, L.; Sun, Z. Y.; Chen, N.; Li, Y. J.; Wu, F.; Chen, R. J. Study on the interfacial mechanism of bisalt polyether electrolyte for lithium metal batteries. Adv. Funct. Mater. 2022, 32, 2109184.

    Article  CAS  Google Scholar 

  33. Li, H.; Du, Y. F.; Zhang, Q.; Zhao, Y.; Lian, F. A single-ion conducting network as rationally coordinating polymer electrolyte for solid-state Li metal batteries. Adv. Energy Mater. 2022, 12, 2103530.

    Article  CAS  Google Scholar 

  34. Liang, J. W.; van der Maas, E.; Luo, J.; Li, X. N.; Chen, N.; Adair, K. R.; Li, W. H.; Li, J. J.; Hu, Y. F.; Liu, J. et al. A series of ternary metal chloride superionic conductors for high-performance all-solid-state lithium batteries. Adv. Energy Mater. 2022, 12, 2103921.

    Article  CAS  Google Scholar 

  35. Cho, J. H.; Kim, K.; Chakravarthy, S.; Xiao, X. C.; Rupp, J. L. M.; Sheldon, B. W. An investigation of chemo-mechanical phenomena and Li metal penetration in all-solid-state lithium metal batteries using in situ optical curvature measurements. Adv. Energy Mater. 2022, 12, 2200369.

    Article  CAS  Google Scholar 

  36. Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

    Article  Google Scholar 

  37. Liu, X.; Zarrabeitia, M.; Mariani, A.; Gao, X. P.; Schütz, H. M.; Fang, S.; Bizien, T.; Elia, G. A.; Passerini, S. Enhanced Li+ transport in ionic liquid-based electrolytes aided by fluorinated ethers for highly efficient lithium metal batteries with improved rate capability. Small Methods 2021, 5, 2100168.

    Article  CAS  Google Scholar 

  38. Wahyudi, W.; Ladelta, V.; Tsetseris, L.; Alsabban, M. M.; Guo, X. R.; Yengel, E.; Faber, H.; Adilbekova, B.; Seitkhan, A.; Emwas, A. H. et al. Lithium-ion desolvation induced by nitrate additives reveals new insights into high performance lithium batteries. Adv. Functional Mater. 2021, 31, 2101593.

    Article  CAS  Google Scholar 

  39. Park, S. H.; Jun, D.; Lee, G. H.; Lee, S. G.; Lee, Y. J. Toward highperformance anodeless batteries based on controlled lithium metal deposition: A review. J. Mater. Chem. A 2021, 9, 14656–14681.

    Article  CAS  Google Scholar 

  40. Sun, C.; Dong, J.; Lu, X. D.; Li, Y. W.; Lai, C. Sol electrolyte: Pathway to long-term stable lithium metal anode. Adv. Funct. Mater. 2021, 31, 2100594.

    Article  CAS  Google Scholar 

  41. Xia, L.; Miao, H.; Zhang, C. F.; Chen, G. Z.; Yuan, J. L. Review—Recent advances in non-aqueous liquid electrolytes containing fluorinated compounds for high energy density lithiumion batteries. Energy Storage Mater. 2021, 38, 542–570.

    Article  Google Scholar 

  42. Wang, H. P.; He, J.; Liu, J. D.; Qi, S. H.; Wu, M. G.; Wen, J.; Chen, Y. N.; Feng, Y. Z.; Ma, J. M. Electrolytes enriched by crown ethers for lithium metal batteries. Adv. Funct. Mater. 2020, 31, 2002578.

    Article  Google Scholar 

  43. Li, X.; Liu, J. D.; He, J.; Wang, H. P.; Qi, S. H.; Wu, D. X.; Huang, J. D.; Li, F.; Hu, W.; Ma, J. M. Hexafluoroisopropyl trifluoromethanesulfonate-driven easily Li+ desolvated electrolyte to afford Li∥NCM811 cells with efficient anode/cathode electrolyte interphases. Adv. Funct. Mater. 2021, 31, 2104395.

    Article  CAS  Google Scholar 

  44. Ma, G. Q.; Wang, L.; Zhang, J. J.; Chen, H. C.; He, X. M.; Ding, Y. S. Lithium-ion battery electrolyte containing fluorinated solvent and additive. Progr. Chem. 2016, 28, 1299–1312.

    CAS  Google Scholar 

  45. Xu, N. B.; Shi, J. W.; Liu, G. P.; Yang, X. R.; Zheng, J. M.; Zhang, Z. R.; Yang, Y. Research progress of fluorine-containing electrolyte additives for lithium ion batteries. J. Power Sources Adv. 2021, 7, 100043.

    Article  CAS  Google Scholar 

  46. Chen, J.; Fan, X. L.; Li, Q.; Yang, H. B.; Khoshi, M. R.; Xu, Y. B.; Hwang, S.; Chen, L.; Ji, X.; Yang, C. Y. et al. Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 2020, 5, 386–397.

    Article  CAS  Google Scholar 

  47. Deng, B. W.; Sun, D. M.; Wan, Q.; Wang, H.; Chen, T.; Li, X.; Qu, M. Z.; Peng, G. C. Review of electrolyte additives for ternary cathode lithium-ion battery. Acta Chim. Sin. 2018, 76, 259.

    Article  CAS  Google Scholar 

  48. Xu, Z. X.; Yang, J.; Qian, J.; Zhang, T.; Nuli, Y.; Chen, R. J.; Wang, J. L. Bicomponent electrolyte additive excelling fluoroethylene carbonate for high performance Si-based anodes and lithiated Si−S batteries. Energy Storage Mater. 2019, 20, 388–394.

    Article  Google Scholar 

  49. Cai, Y. C.; Zhang, Q.; Lu, Y.; Hao, Z. M.; Ni, Y. X.; Chen, J. An ionic liquid electrolyte with enhanced Li+ transport ability enables stable Li deposition for high-performance Li−O2 batteries. Angew. Chem., Int. Ed. 2021, 60, 25973–25980.

    Article  CAS  Google Scholar 

  50. Pei, A.; Zheng, G. Y.; Shi, F. F.; Li, Y. Z.; Cui, Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017, 17, 1132–1139.

    Article  CAS  Google Scholar 

  51. Zhang, H.; Eshetu, G. G.; Judez, X.; Li, C. M.; Rodriguez-Martínez, L. M.; Armand, M. Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: Progress and perspectives. Angew. Chem., Int. Ed. 2018, 57, 15002–15027.

    Article  CAS  Google Scholar 

  52. Pu, X. J.; Zhao, D.; Fu, C. L.; Chen, Z. X.; Cao, S. N.; Wang, C. S.; Cao, Y. L. Understanding and calibration of charge storage mechanism in cyclic voltammetry curves. Angew. Chem., Int. Ed. 2021, 60, 21310–21318.

    Article  CAS  Google Scholar 

  53. Li, B.; Wang, Y. F.; Jiang, N.; An, L.; Song, J.; Zuo, Y. X.; Ning, F. H.; Shang, H. F.; Xia, D. G. Electrolytic-anion-redox adsorption pseudocapacitance in nanosized lithium-free transition metal oxides as cathode materials for Li-ion batteries. Nano Energy 2020, 72, 104727.

    Article  CAS  Google Scholar 

  54. Wang, S.; Ma, W. J.; Zang, X. Y.; Ma, L. Z.; Tang, L.; Guo, J. X.; Liu, Q. Y.; Zhang, X. VS4-decorated carbon nanotubes for lithium storage with pseudocapacitance contribution. ChemSusChem 2019, 13, 1637–1644.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint Funds of the National Natural Science Foundation of China (No. U2130204), the S&T Major Project of Inner Mongolia Autonomous Region in China (No. 2020ZD0018), and Beijing Outstanding Young Scientists Program (No. BJJWZYJH01201910007023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuejiao Li or Renjie Chen.

Electronic Supplementary Material

12274_2022_5363_MOESM1_ESM.pdf

A gradient solid electrolyte interphase with high Li+ conductivity induced by bisfluoroacetamide additive for stable lithium metal batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wen, Z., Chen, Y. et al. A gradient solid electrolyte interphase with high Li+ conductivity induced by bisfluoroacetamide additive for stable lithium metal batteries. Nano Res. 16, 8425–8432 (2023). https://doi.org/10.1007/s12274-022-5363-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5363-6

Keywords

Navigation