Skip to main content
Log in

Patternable and transferable silver nanowire conductors via plasma-enhanced cryo-transferring process towards highly stretchable and transparent capacitive touch sensor array

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Stretchable transparent electrode (STE) plays a key role in numerous emerging applications as an indispensable component for future stretchable devices. The embedded STE, as a promising candidate, possesses balanced performances and facile preparation procedures. However, it still suffers from the defects of conductive materials caused by the transferring, which results in the irreversible failure of devices. In this work, a patternable silver nanowire (AgNW) STE was fabricated by a plasma-enhanced cryo-transferring (PEC-transferring) process. Owing to the plasma-induced sintering, the AgNW network obtained remarkable improvement in robustness, which ensured the intact network after transferring and thus led to superior tensile electrical properties of the STE. Furthermore, serpentine patterns were utilized to optimize the tensile electrical properties of the STE, which achieved a figure of merit of 292.8 and 150% resistance changing under 50% strain. As a practical application, a 4 × 3 array of the mutual-capacitive type stretchable touch sensors was demonstrated for future touch sensors in stretchable devices. The PEC-transferring process opened a new avenue for patternable embedded STEs and exhibited its high potential in wearable electronics and the Internet of Thing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sunwoo, S. H.; Ha, K. H.; Lee, S.; Lu, N. S.; Kim, D. H. Wearable and implantable soft bioelectronics: Device designs and material strategies. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 359–391.

    CAS  Google Scholar 

  2. Park, C.; Kim, M. S.; Kim, H. H.; Sunwoo, S. H.; Jung, D. J.; Choi, M. K.; Kim, D. H. Stretchable conductive nanocomposites and their applications in wearable devices. Appl. Phys. Rev. 2022, 9, 021312.

    CAS  Google Scholar 

  3. Wang, C. Y.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146.

    CAS  Google Scholar 

  4. Wang, W.; Yang, S.; Ding, K.; Jiao, L.; Yan, J.; Zhao, W.; Ma, Y. Y.; Wang, T. Y.; Cheng, B. W.; Ni, Y. H. Biomaterials- and biostructures inspired high-performance flexible stretchable strain sensors: A review. Chem. Eng. J. 2021, 425, 129949.

    CAS  Google Scholar 

  5. Yang, Y.; Deng, Z. D. Stretchable sensors for environmental monitoring. Appl. Phys. Rev. 2019, 6, 011309.

    Google Scholar 

  6. Vallem, V.; Sargolzaeiaval, Y.; Ozturk, M.; Lai, Y. C.; Dickey, M. D. Energy harvesting and storage with soft and stretchable materials. Adv. Mater. 2021, 33, e2004832.

    Google Scholar 

  7. Kim, N.; Kim, J.; Seo, J.; Hong, C.; Lee, J. Stretchable inorganic LED displays with double-layer modular design for high fill factor. ACS Appl. Mater. Interfaces 2022, 14, 4344–4351.

    CAS  Google Scholar 

  8. Lee, Y.; Kim, D. S.; Jin, S. W.; Lee, H.; Jeong, Y. R.; You, I.; Zi, G.; Ha, J. S. Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chem. Eng. J. 2022, 427, 130858.

    CAS  Google Scholar 

  9. Yang, B.; Zhao, Y. Q.; Ali, M. U.; Ji, J. P.; Yan, H.; Zhao, C. B.; Cai, Y. L.; Zhang, C. H.; Meng, H. Asymmetrically enhanced coplanar-electrode electroluminescence for information encryption and ultrahighly stretchable displays. Adv. Mater. 2022, 34, e2201342.

    Google Scholar 

  10. Boutry, C. M.; Negre, M.; Jorda, M.; Vardoulis, O.; Chortos, A.; Khatib, O.; Bao, Z. N. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci. Robot. 2018, 3, eaau6914.

    Google Scholar 

  11. Zhang, Y. J.; He, P.; Luo, M.; Xu, X. W.; Dai, G. Z.; Yang, J. L. Highly stretchable polymer/silver nanowires composite sensor for human health monitoring. Nano Res. 2020, 13, 919–926.

    CAS  Google Scholar 

  12. Xin, Y. Y.; Zhou, J.; Lubineau, G. A highly stretchable strain-insensitive temperature sensor exploits the Seebeck effect in nanoparticle-based printed circuits. J. Mater. Chem. A 2019, 7, 24493–24501.

    CAS  Google Scholar 

  13. Yao, B.; Xu, X. W.; Zhang, Q. F.; Yu, H.; Li, H.; Ren, L. L.; Perini, S.; Lanagan, M.; Wang, Q.; Wang, H. Highly stretchable and mechanically tunable antennas based on three-dimensional liquid metal network. Mater. Lett. 2020, 270, 127727.

    CAS  Google Scholar 

  14. Zhang, B. W.; Li, W. L.; Yang, Y.; Chen, C. T.; Li, C. F.; Suganuma, K. Fully embedded CuNWs/PDMS conductor with high oxidation resistance and high conductivity for stretchable electronics. J. Mater. Sci. 2019, 54, 6381–6392.

    CAS  Google Scholar 

  15. Dong, K.; Wu, Z. Y.; Deng, J. N.; Wang, A. C.; Zou, H. Y.; Chen, C. Y.; Hu, D. M.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A stretchable yarn embedded triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and multifunctional pressure sensing. Adv. Mater. 2018, 30, e1804944.

    Google Scholar 

  16. Yang, H. J.; Lee, J. W.; Seo, S. H.; Jeong, B.; Lee, B.; Do, W. J.; Kim, J. H.; Cho, J. Y.; Jo, A.; Jeong, H. J. et al. Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 2021, 86, 106083.

    CAS  Google Scholar 

  17. Guan, X. Y.; Xu, B. G.; Huang, J. X.; Jing, T. T.; Gao, Y. Y. Fiber-shaped stretchable triboelectric nanogenerator with a novel synergistic structure of opposite Poisson’s ratios. Chem. Eng. J. 2022, 427, 131698.

    CAS  Google Scholar 

  18. Kwan, Y. C. G.; Le, Q. L.; Huan, C. H. A. Time to failure modeling of silver nanowire transparent conducting electrodes and effects of a reduced graphene oxide over layer. Sol. Energy Mater. Sol. Cells 2016, 144, 102–108.

    CAS  Google Scholar 

  19. Tang, M.; Zheng, P.; Wang, K. Q.; Qin, Y. J.; Jiang, Y. Z.; Cheng, Y. R.; Li, Z.; Wu, L. M. Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. J. Mater. Chem. A 2019, 7, 27278–27288.

    CAS  Google Scholar 

  20. Xu, J. Z.; Qiu, Z. G.; Yang, M. Y.; Chen, J. W.; Luo, Q. Y.; Wu, Z. Y.; Liu, G. S.; Wu, J.; Qin, Z.; Yang, B. R. Stretchable transparent electrode via wettability self-assembly in mechanically induced self-cracking. ACS Appl. Mater. Interfaces 2021, 13, 52880–52891.

    CAS  Google Scholar 

  21. Kim, K. S.; Choi, S. B.; Kim, D. U.; Lee, C. R.; Kim, J. W. Photo-induced healing of stretchable transparent electrodes based on thermoplastic polyurethane with embedded metallic nanowires. J. Mater. Chem. A 2018, 6, 12420–12429.

    CAS  Google Scholar 

  22. Liu, G. S.; Wang, T.; Wang, Y. X.; Zheng, H. J.; Chen, Y. S.; Zeng, Z. J.; Chen, L.; Chen, Y. F.; Yang, B. R.; Luo, Y. H. et al. One-step plasmonic welding and photolithographic patterning of silver nanowire network by UV-programable surface atom diffusion. Nano Res. 2022, 15, 2582–2591.

    CAS  Google Scholar 

  23. Zhou, H. Y.; Han, S. J.; Harit, A. K.; Kim, D. H.; Kim, D. Y.; Choi, Y. S.; Kwon, H.; Kim, K. N.; Go, G. T.; Yun, H. J. et al. Graphene-based intrinsically stretchable 2D-contact electrodes for highly efficient organic light-emitting diodes. Adv. Mater. 2022, 34, e2203040.

    Google Scholar 

  24. Zhao, X. F.; Wen, X. H.; Zhong, S. L.; Liu, M. Y.; Liu, Y. H.; Yu, X. B.; Ma, R. G.; Zhang, D. W.; Wang, J. C.; Lu, H. L. Hollow MXene sphere-based flexible e-skin for multiplex tactile detection. ACS Appl. Mater. Interfaces 2021, 13, 45924–45934.

    CAS  Google Scholar 

  25. Niu, Z. Q.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y. C.; Khanarian, G.; Kim, D.; Dou, L. T.; Dehestani, A.; Schierle-Arndt, K. et al. Ultrathin epitaxial Cu@Au core-shell nanowires for stable transparent conductors. J. Am. Chem. Soc. 2017, 139, 7348–7354.

    CAS  Google Scholar 

  26. Niu, Z. Q.; Cui, F.; Kuttner, E.; Xie, C. L.; Chen, H.; Sun, Y. C.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Synthesis of silver nanowires with reduced diameters using benzoin-derived radicals to make transparent conductors with high transparency and low haze. Nano Lett. 2018, 18, 5329–5334.

    CAS  Google Scholar 

  27. Niu, Z. Q.; Chen, S. P.; Yu, Y.; Lei, T.; Dehestani, A.; Schierle-Arndt, K.; Yang, P. D. Morphology-controlled transformation of Cu@Au core–shell nanowires into thermally stable Cu3Au intermetallic nanowires. Nano Res. 2020, 13, 2564–2569.

    CAS  Google Scholar 

  28. Fei, F.; Kotak, P.; He, L.; Li, X. F.; Vanderhoef, C.; Lamuta, C.; Song, X. Cephalopod-inspired stretchable self-morphing skin via embedded printing and twisted spiral artificial muscles. Adv. Funct. Mater. 2021, 31, 2105528.

    CAS  Google Scholar 

  29. Helseth, L. E. Interdigitated electrodes based on liquid metal encapsulated in elastomer as capacitive sensors and triboelectric nanogenerators. Nano Energy 2018, 50, 266–272.

    CAS  Google Scholar 

  30. Cui, N.; Tang, Q. X.; Ren, H.; Zhao, X. L.; Tong, Y. H.; Liu, Y. C. A photolithographic stretchable transparent electrode for an all-solution-processed fully transparent conformal organic transistor array. J. Mater. Chem. C 2019, 7, 5385–5393.

    CAS  Google Scholar 

  31. Fan, X.; Wang, N. X.; Yan, F.; Wang, J. Z.; Song, W.; Ge, Z. Y. A transfer-printed, stretchable, and reliable strain sensor using PEDOT: PSS/Ag NW hybrid films embedded into elastomers. Adv. Mater. Technol. 2018, 3, 1800030.

    Google Scholar 

  32. Zhu, X. Y.; Liu, M. Y.; Qi, X. M.; Li, H. K.; Zhang, Y. F.; Li, Z. H.; Peng, Z. L.; Yang, J. J.; Qian, L.; Xu, Q. et al. Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing. Adv. Mater. 2021, 33, e2007772.

    Google Scholar 

  33. Zhang, C. P.; Khan, A.; Cai, J. X.; Liang, C. W.; Liu, Y. J.; Deng, J. H.; Huang, S. Y.; Li, G. X.; Li, W. D. Stretchable transparent electrodes with solution-processed regular metal mesh for an electroluminescent light-emitting film. ACS Appl. Mater. Interfaces 2018, 10, 21009–21017.

    CAS  Google Scholar 

  34. Yu, Y.; Zhang, Y. K.; Li, K.; Yan, C.; Zheng, Z. J. Bio-inspired chemical fabrication of stretchable transparent electrodes. Small 2015, 11, 3444–3449.

    CAS  Google Scholar 

  35. Chen, Z. J.; Lu, X.; Wang, H. X.; Chang, J.; Wang, D. R.; Wang, W. S.; Ng, S. W.; Rong, M. M.; Li, P. et al. Electrochemical replication and transfer for low-cost, sub-100 nm patterning of materials on flexible substrates. Adv. Mater. 2023, 35, e2210778.

    Google Scholar 

  36. Lu, X.; Zhang, Y. K.; Zheng, Z. J. Metal-based flexible transparent electrodes: Challenges and recent advances. Adv. Electron. Mater. 2021, 7, 2001121.

    CAS  Google Scholar 

  37. Yoo, D.; Won, D. J.; Cho, W.; Kim, S.; Kim, J. High-resolution and facile patterning of silver nanowire electrodes by solvent-free photolithographic technique using UV-curable pressure sensitive adhesive film. Small Methods 2021, 5, e2101049.

    Google Scholar 

  38. Pinheiro, T.; Correia, R.; Morais, M.; Coelho, J.; Fortunato, E.; Sales, M. G. F.; Marques, A. C.; Martins, R. Water peel-off transfer of electronically enhanced, paper-based laser-induced graphene for wearable electronics. ACS Nano 2022, 16, 20633–20646.

    CAS  Google Scholar 

  39. Fang, Y. S.; Li, Y.; Wang, X.; Zhou, Z. G.; Zhang, K.; Zhou, J.; Hu, B. Cryo-transferred ultrathin and stretchable epidermal electrodes. Small 2020, 16, e2000450.

    Google Scholar 

  40. Kang, M.; Lee, H.; Hong, S.; Choi, J. Molecular mechanics of Ag nanowire transfer processes subjected to contact loading by a PDMS substrate. Nanoscale Horiz. 2022, 7, 1073–1081.

    CAS  Google Scholar 

  41. Hong, S.; Lee, J.; Do, K.; Lee, M.; Kim, J. H.; Lee, S.; Kim, D. H. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Adv. Funct. Mater. 2017, 27, 1704353.

    Google Scholar 

  42. Ye, G.; Song, Z. Z.; Yu, T. H.; Tan, Q. S.; Zhang, Y.; Chen, T. L.; He, C. C.; Jin, L. H.; Liu, N. Dynamic Ag–N bond enhanced stretchable conductor for transparent and self-healing electronic skin. ACS Appl. Mater. Interfaces 2020, 12, 1486–1494.

    CAS  Google Scholar 

  43. Lee, C.; Oh, Y.; Yoon, I. S.; Kim, S. H.; Ju, B. K.; Hong, J. M. Flash-induced nanowelding of silver nanowire networks for transparent stretchable electrochromic devices. Sci. Rep. 2018, 8, 2763.

    Google Scholar 

  44. Wang, J. X.; Yan, C. Y.; Kang, W. B.; Lee, P. S. High-efficiency transfer of percolating nanowire films for stretchable and transparent photodetectors. Nanoscale 2014, 6, 10734–10739.

    CAS  Google Scholar 

  45. Cui, H. W.; Jiu, J. T.; Suganuma, K.; Uchida, H. Super flexible, highly conductive electrical compositor hybridized from polyvinyl alcohol and silver nano wires. RSC Adv. 2015, 5, 7200–7207.

    CAS  Google Scholar 

  46. Cai, Y. G.; Piao, X. Q.; Yao, X. J.; Nie, E.; Zhang, Z. J.; Sun, Z. A facile method to prepare silver nanowire transparent conductive film for heaters. Mater. Lett. 2019, 249, 66–69.

    CAS  Google Scholar 

  47. Goak, J. C.; Kim, T. Y.; Kim, D. U.; Chang, K. S.; Lee, C. S.; Lee, N. Stable heating performance of carbon nanotube/silver nanowire transparent heaters. Appl. Surf. Sci. 2020, 510, 145445.

    CAS  Google Scholar 

  48. Liu, J. F.; Ge, Y. J.; Zhang, D. M.; Han, M.; Li, M. X.; Zhang, M.; Duan, X. D.; Yang, Z. L.; Hu, J. W. Plasma cleaning and self-limited welding of silver nanowire films for flexible transparent conductors. ACS Appl. Nano Mater. 2021, 4, 1664–1671.

    CAS  Google Scholar 

  49. Calvimontes, A.; Mauersberger, P.; Nitschke, M.; Dutschk, V.; Simon, F. Effects of oxygen plasma on cellulose surface. Cellulose 2011, 18, 803–809.

    CAS  Google Scholar 

  50. Chen, Y. T.; Carmichael, R. S.; Carmichael, T. B. Patterned, flexible, and stretchable silver nanowire/polymer composite films as transparent conductive electrodes. ACS Appl. Mater. Interfaces 2019, 11, 31210–31219.

    CAS  Google Scholar 

  51. Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv. Mater. 2015, 27, 4744–4751.

    CAS  Google Scholar 

  52. Fan, H. W.; Li, K. R.; Li, Q.; Hou, C. Y.; Zhang, Q. H.; Li, Y. G.; Jin, W. S.; Wang, H. Z. Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator. J. Mater. Chem. C 2017, 5, 9778–9785.

    CAS  Google Scholar 

  53. Han, J. K.; Yang, J. K.; Gao, W. W.; Bai, H. Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 2021, 31, 2010155.

    CAS  Google Scholar 

  54. Lee, H. J.; Oh, S.; Cho, K. Y.; Jeong, W. L.; Lee, D. S.; Park, S. J. Spontaneous and selective nanowelding of silver nanowires by electrochemical ostwald ripening and high electrostatic potential at the junctions for high-performance stretchable transparent electrodes. ACS Appl. Mater. Interfaces 2018, 10, 14124–14131.

    CAS  Google Scholar 

  55. Lin, Y.; Yuan, W.; Ding, C.; Chen, S. L.; Su, W. M.; Hu, H. L.; Cui, Z.; Li, F. S. Facile and efficient patterning method for silver nanowires and its application to stretchable electroluminescent displays. ACS Appl. Mater. Interfaces 2020, 12, 24074–24085.

    CAS  Google Scholar 

  56. Heo, G.; Pyo, K. H.; Lee, D. H.; Kim, Y.; Kim, J. W. Critical role of Diels–Adler adducts to realise stretchable transparent electrodes based on silver nanowires and silicone elastomer. Sci. Rep. 2016, 6, 25358.

    CAS  Google Scholar 

  57. Yang, Y.; Ding, S.; Araki, T.; Jiu, J.; Sugahara, T.; Wang, J.; Vanfleteren, J.; Sekitani, T.; Suganuma, K. Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Res. 2016, 9, 401–414.

    CAS  Google Scholar 

  58. Wang, X. D.; Zhang, Y. F.; Zhang, X. J.; Huo, Z. H.; Li, X. Y.; Que, M. L.; Peng, Z. C.; Wang, H.; Pan, C. F. A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics. Adv. Mater. 2018, 30, e1706738.

    Google Scholar 

  59. Ding, S.; Jiu, J.; Gao, Y.; Tian, Y. H.; Araki, T.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K. et al. One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices. ACS Appl. Mater. Interfaces 2016, 8, 6190–6199.

    CAS  Google Scholar 

  60. Yu, S. H.; Zhang, H. B.; Yang, P.; Zhao, L.; Wu, C.; Li, L. X. Highly conductive and stretching-insensitive transparent electrodes based on CuNWs. Mater. Lett. 2022, 316, 132023.

    CAS  Google Scholar 

  61. Kim, D. W.; Lee, G.; Pal, M.; Jeong, U. Highly deformable transparent Au film electrodes and their uses in deformable displays. ACS Appl. Mater. Interfaces 2020, 12, 41969–41980.

    CAS  Google Scholar 

  62. Guo, C. F.; Chen, Y.; Tang, L.; Wang, F.; Ren, Z. F0 Enhancing the scratch resistance by introducing chemical bonding in highly stretchable and transparent electrodes. Nano Lett. 2016, 16, 594–600.

    CAS  Google Scholar 

  63. Zhang, J.; Liu, X. J.; Xu, W. J.; Luo, W. H.; Li, M.; Chu, F. B.; Xu, L.; Cao, A. Y.; Guan, J. S.; Tang, S. M. et al. Stretchable transparent electrode arrays for simultaneous electrical and optical interrogation of neural circuits in vivo. Nano Lett. 2018, 18, 2903–2911.

    CAS  Google Scholar 

  64. Choi, T. Y.; Hwang, B. U.; Kim, B. Y.; Trung, T. Q.; Nam, Y. H.; Kim, D. N.; Eom, K.; Lee, N. E. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl. Mater. Interfaces 2017, 9, 18022–18030.

    CAS  Google Scholar 

  65. Kim, M. S.; Kim, S.; Choi, J.; Kim, S.; Han, C.; Lee, Y.; Jung, Y.; Park, J.; Oh, S.; Bae, B. S. et al. Stretchable printed circuit board based on leak-free liquid metal interconnection and local strain control. ACS Appl. Mater. Interfaces 2022, 14, 1826–1837.

    CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Key-Area Research and Development Program of Guangdong Province (No. 2019B010934001), the Fundamental Research Funds for the Central Universities, Sun Yat-Sen University (No.19lgzd12), and the Scientific and Technological Projection of Guangdong Province (No. 2020B1212060030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo-ru Yang.

Electronic Supplementary Material

12274_2023_5832_MOESM1_ESM.pdf

Patternable and transferable silver nanowire conductors via plasma-enhanced cryo-transferring process toward highly stretchable and transparent capacitive touch sensor array

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Qiu, Z., Zhu, S. et al. Patternable and transferable silver nanowire conductors via plasma-enhanced cryo-transferring process towards highly stretchable and transparent capacitive touch sensor array. Nano Res. 16, 11303–11311 (2023). https://doi.org/10.1007/s12274-023-5832-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5832-6

Keywords

Navigation