Skip to main content
Log in

Biaxially stretchable transparent conductors that use nanowire networks

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Stretchable transparent conductors are required for flexible and wearable electronics. This study demonstrates biaxially stretchable transparent conductors that use silver nanowire networks. The use of buckled nanowire networks has previously been reported to lend stretchability to the transparent conductor in a single axis. However, a nanowire network that is prestrained and then buckled out-of-plane biaxially shows a deterioration of the electrical conductivity after a single cycle of stretching and releasing the strain uniaxially. This has been attributed to the loss of good electrical contact between the nanowires. By hot pressing the out-of-plane buckled nanowires to obtain an in-plane wavy nanowire network with good wire-to-wire junctions, a biaxially stretchable transparent conductor that maintains good electrical conductivity with stretching up to 10% is demonstrated. The methods of prestraining the nanowire network to achieve out-of-plane buckled nanowires and hot pressing the out-of-plane buckled nanowires to obtain an in-plane wavy nanowire network with fused junctions are expected to be practical for other classes of percolative networks based on one-dimensional (1D) materials used in flexible and stretchable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. K-Y. Chun, Y. Oh, J. Rho, J-H. Ahn, Y-J. Kim, H.R. Choi, and S. Baik: Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nat. Nanotechnol. 5, 853 (2010).

    Article  CAS  Google Scholar 

  2. K.H. Kim, M. Vural, and M.F. Islam: Single-walled carbon nanotube aerogel-based elastic conductors. Adv. Mater. 23, 2865 (2011).

    Article  CAS  Google Scholar 

  3. Y.Y. Huang and E.M. Terentjev: Tailoring the electrical properties of carbon nanotubes-polymer composite. Adv. Funct. Mater. 20, 4062 (2010).

    Article  CAS  Google Scholar 

  4. K. Liu, Y. Sun, P. Liu, X. Lin, S. Fan, and K. Jiang: Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 21, 2721 (2011).

    Article  CAS  Google Scholar 

  5. M.K. Shin, J. Oh, M. Lima, M.E. Kozlov, S.J. Kim, and R.H. Baughman: Elastomeric conductive composites based on carbon nanotube forests. Adv. Mater. 22, 2663 (2010).

    Article  CAS  Google Scholar 

  6. S. Huang, L. Li, Z. Yang, L. Zhang, H. Saiyin, T. Chen, and H. Peng: A new and general fabrication of an aligned carbon nanotube/polymer film for electrode applications. Adv. Mater. 23, 4707 (2011).

    Article  CAS  Google Scholar 

  7. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya: A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468 (2008).

    Article  CAS  Google Scholar 

  8. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D.N. Futaba, and K. Hata: A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6, 296 (2011).

    Article  CAS  Google Scholar 

  9. Y. Zhang, C.J. Sheehan, J. Zhai, G. Zou, H. Luo, J. Xiong, Y.T. Zhu, and Q.X. Jia: Polymer-embedded carbon nanotube ribbons for stretchable conductors. Adv. Mater. 22, 3027 (2010).

    Article  CAS  Google Scholar 

  10. Y. Zhu and F. Xu: Buckling of aligned carbon nanotubes as stretchable conductors: A new manufacturing strategy. Adv. Mater. 24, 1073 (2012).

    Article  CAS  Google Scholar 

  11. F. Xu, X. Wang, Y. Zhu, and Y. Zhu: Wavy ribbons of carbon nanotubes for stretchable conductors. Adv. Funct. Mater. 22, 1279 (2012).

    Article  CAS  Google Scholar 

  12. R-H. Kim, M-H. Bae, D.G. Kim, H. Cheng, B.H. Kim, D-H. Kim, M. Li, J. Wu, F. Du, H-S. Kim, S. Kim, D. Estrada, S.W. Hong, Y. Huang, E. Pop, and J.A. Rogers: Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3881 (2011).

    Article  CAS  Google Scholar 

  13. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J-H. Ahn, P. Kim, J-Y. Choi, and B.H. Hong: Large scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706 (2009).

    Article  CAS  Google Scholar 

  14. D.J. Lipomi, B.C-K. Tee, M. Vosgueritchian, and Z. Bao: Stretchable organic solar cells. Adv. Mater. 23, 1771 (2011).

    Article  CAS  Google Scholar 

  15. D.J. Lipomi, J.A. Lee, M. Vosgueritchian, B.C-K. Tee, J.A. Bolander, and Z. Bao: Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates. Chem. Mater. 24, 373 (2012).

    Article  CAS  Google Scholar 

  16. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K.H. Nam, D. Lee, S.S. Lee, and S.H. Ko: Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326 (2012).

    Article  CAS  Google Scholar 

  17. T. Akter and W.S. Kim: Reversible stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl. Mater. Interfaces 4, 1855 (2012).

    Article  CAS  Google Scholar 

  18. J-Y. Lee, S.T. Conner, Y. Cui, and P. Peumans: Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 8, 689 (2008).

    Article  CAS  Google Scholar 

  19. V. Scardaci, R. Coull, P.E. Lyons, D. Rickard, and J.N. Coleman: Spray deposition of highly transparent, low-resistance networks of silver nanowires over large areas. Small 7, 2621 (2011).

    Article  CAS  Google Scholar 

  20. S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj, W.J. Blau, J.J. Boland, and J.N. Coleman: Silver nanowire networks as flexible, transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3, 1767 (2009).

    Article  CAS  Google Scholar 

  21. L. Hu, H.S. Kim, J-Y. Kim, P. Peumans, and Y. Cui: Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955 (2010).

    Article  CAS  Google Scholar 

  22. X. Ho, J. Tey, W. Liu, C.K. Cheng, and J. Wei: Biaxially stretchable silver nanowire transparent conductors. J. Appl. Phys. 113, 044311 (2013).

    Article  Google Scholar 

  23. M-S. Lee, K. Lee, S-Y. Kim, H. Lee, J. Park, K-H. Choi, H-K. Kim, D-G. Kim, D-Y. Lee, S.W. Nam, and J-U. Park: High-performance, transparent and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 2814 (2013).

    Article  CAS  Google Scholar 

  24. Y. Zhu, Z. Sun, Z. Yan, Z. Jin, and J.M. Tour: Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 5, 6472 (2011).

    Article  CAS  Google Scholar 

  25. L. Hu, H. Wu, and Y. Cui: Metal nanogrids, nanowires and nanofibers for transparent electrodes. MRS Bull. 36, 760 (2011).

    Article  Google Scholar 

  26. P.B. Catrysse and S.H. Fan: Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices. Nano Lett. 10, 2944 (2010).

    Article  CAS  Google Scholar 

  27. X. Ho, H. Lu, W. Liu, J. Tey, C.K. Cheng, E. Kok, and J. Wei: Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films. J. Mater. Res. 28, 620 (2013).

    Article  CAS  Google Scholar 

  28. N. Lu, S. Wang, Z. Suo, and J. Vlassak: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).

    Article  Google Scholar 

  29. X. Ho and J. Wei: Films of carbon nanomaterials for transparent conductors. Materials 6, 2155 (2013).

    Article  CAS  Google Scholar 

  30. Y. Zhu, Q. Qin, F. Xu, F. Fan, Y. Ding, T. Zhang, B.J. Wiley, and Z.L. Wang: Size effects on elasticity, yielding and fracture of silver nanowires: In situ experiments. Phys. Rev. B 85, 045443 (2012).

    Article  Google Scholar 

  31. J.H. Yoo, S.I. Oh, and M.S. Jeong: The enhanced elastic modulus of nanowires associated with multitwins. J. Appl. Phys. 107, 094316 (2010).

    Article  Google Scholar 

  32. R. Gunawidjaja, H. Ko, C. Jiang, and V.V. Tsukruk: Buckling behavior of highly oriented silver nanowire encapsulated within layer-by-layer films. Chem. Mater. 19, 2007 (2007).

    Article  CAS  Google Scholar 

  33. J. Wu, J. Zang, A.R. Rathmell, X. Zhao, and B.J. Wiley: Reversible sliding in networks of nanowires. Nano Lett. 13, 2381 (2013).

    Article  CAS  Google Scholar 

  34. E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, and M.L. Brongersma: Self-limited plasmonic welding of silver nanowire junctions. Nat. Mater. 11, 241 (2012).

    Article  CAS  Google Scholar 

  35. J. Lee, I. Lee, T-S. Kim, and J-Y. Lee: Efficient welding of silver nanowire networks without post-processing. Small 9, 2887 (2013).

    Article  CAS  Google Scholar 

  36. B. Kang, J. Yun, S-G. Kim, and M. Yang: Adaptive fabrication of a flexible electrode by optically self-selected interfacial adhesion and its application to highly transparent and conductive film. Small 9, 2111 (2013).

    Article  CAS  Google Scholar 

  37. T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T.T. Nge, Y. Aso, and K. Suganuma: Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 4, 1215 (2011).

    Article  CAS  Google Scholar 

  38. J.A. Rogers, T. Someya, and Y. Huang: Materials and mechanics for stretchable electronics. Science 327, 1603 (2010).

    Article  CAS  Google Scholar 

  39. D-H. Kim, J. Xiao, J. Song, Y. Huang, and J.A. Rogers: Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 22, 2108 (2010).

    Article  CAS  Google Scholar 

  40. Y. Zhang, S. Xu, H. Fu, J. Lee, J. Su, K-C. Hwang, J.A. Rogers, and Y. Huang: Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter. 9, 8062 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge Vuong Ngoc Dung at Singapore Institute of Manufacturing Technology for help with designing and printing the fixture for prestraining the PDMS equibiaxially. This work was supported by the Agency of Science, Technology and Research (A*STAR), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinning Ho or Jun Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, X., Cheng, C.K., Tey, J.N. et al. Biaxially stretchable transparent conductors that use nanowire networks. Journal of Materials Research 29, 2965–2972 (2014). https://doi.org/10.1557/jmr.2014.338

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.338

Navigation