Skip to main content
Log in

Dual cation doping enabling simultaneously boosted capacity and rate capability of MnO2 cathodes for Zn//MnO2 batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Aqueous rechargeable Zn//MnO2 batteries show promising prospects for grid-scale energy storage due to their intrinsic safety, abundant resource, and potential high performance. Unfortunately, the real capability of these devices is far from satisfactory thanks to the low capacity and sluggish kinetics of the MnO2 cathode. Herein, we report a dual cation doping strategy by synthesis of MnO2 in the presence of Ti3C2X MXenes and Ni2+ ions to essentially address these drawbacks. Such a process contributes to a Ti,Ni co-doped α-MnO2 anchored on MXenes. The Ti3+ ions incorporated in the framework allow a partial multivalent variation for a large capacity while the Ni2+ ions promote the H+ transfer within the MnO2 matrix via the Grotthuss proton transport manner. As a result, the optimal dual cation doped MnO2 exhibits a large reversible capacity of 378 mAh·g−1 at 0.1 C and a high rate capability. Moreover, capacity retention as high as 92% is observed after cycling at 4 C for 1000 times, far superior to many of the previously reported results. This facile strategy demonstrated here may shed new insight into the rational design of electrodes based on high-performance Zn//MnO2 batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, L. Y.; Yang, K.; Zheng, J. X.; Xu, K.; Amine, K.; Pan, F. Harnessing the surface structure to enable high-performance cathode materials for lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 4667–4680.

    CAS  Google Scholar 

  2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

    CAS  Google Scholar 

  3. Lu, Y. H.; Goodenough, J. B.; Kim, Y. Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 2011, 133, 5756–5759.

    CAS  Google Scholar 

  4. Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; Von Cresce, A. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem., Int. Ed. 2016, 128, 7252–7257.

    Google Scholar 

  5. Suo, L. M.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X. L.; Luo, C.; Wang, C. S.; Xu, K. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 2015, 350, 938–943.

    CAS  Google Scholar 

  6. Li, Q.; Chen, A.; Wang, D. H.; Zhao, Y. W.; Wang, X. Q.; Jin, X.; Xiong, B.; Zhi, C. Y. Tailoring the metal electrode morphology via electrochemical protocol optimization for long-lasting aqueous zinc batteries. Nat. Commun. 2022, 13, 3699.

    CAS  Google Scholar 

  7. Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 135, e202215136.

    Google Scholar 

  8. Zhu, J. X.; Li, S. K.; Zhuang, Z. C.; Gao, S.; Hong, X. F.; Pan, X. L.; Yu, R. H.; Zhou, L.; Moskaleva, L. V.; Mai, L. Ultrathin metal silicate hydroxide nanosheets with moderate metal-oxygen covalency enables efficient oxygen evolution. Energy Environ. Mater. 2022, 5, 231–237.

    CAS  Google Scholar 

  9. Chen, S. H.; Zhang, Z. D.; Jiang, W. J.; Zhang, S. S.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zaman, S.; Tan, L.; Zhu, P. et al. Engineering water molecules activation center on multisite electrocatalysts for enhanced CO2 methanation. J. Am. Chem. Soc. 2022, 144, 12807–12815.

    CAS  Google Scholar 

  10. Liu, Y. F.; Liu, S. D.; Xie, X. S.; Li, Z. C.; Wang, P. J.; Lu, B. G.; Liang, S. Q.; Tang, Y.; Zhou, J. A functionalized separator enables dendrite-free Zn anode via metal-polydopamine coordination chemistry. InfoMat 2023, 5, e12374.

    CAS  Google Scholar 

  11. Liu, J. H.; Zhou, W. H.; Zhao, R. Z.; Yang, Z. D.; Li, W.; Chao, D. L.; Qiao, S. Z.; Zhao, D. Y. Sulfur-based aqueous batteries: Electrochemistry and strategies. J. Am. Chem. Soc. 2021, 143, 15475–15489.

    CAS  Google Scholar 

  12. Yang, Z. D.; Wang, B. Y.; Chen, Y. J.; Zhou, W. H.; Li, H. P.; Zhao, R. Z.; Li, X. R.; Zhang, T. S.; Bu, F. X.; Zhao, Z. W. et al. Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries. Natl. Sci. Rev. 2022, 0, nwac268.

    Google Scholar 

  13. Xie, X. S.; Li, J. J.; Xing, Z. Y.; Lu, B. G.; Liang, S. Q.; Zhou, J. Biocompatible zinc battery with programmable electro-cross-linked electrolyte. Natl. Sci. Rev. 2023, 10, nwac281.

    Google Scholar 

  14. Hou, Z. G.; Zhang, T. S.; Liu, X.; Xu, Z. B.; Liu, J. H.; Zhou, W. H.; Qian, Y. T.; Fan, H. J.; Chao, D. L.; Zhao, D. Y. A solid-to-solid metallic conversion electrochemistry toward 91% zinc utilization for sustainable aqueous batteries. Sci. Adv. 2022, 8, eabp8960.

    CAS  Google Scholar 

  15. Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

    CAS  Google Scholar 

  16. Zhao, R. Z.; Dong, X. S.; Liang, P.; Li, H. P.; Zhang, T. S.; Zhou, W. H.; Wang, B. Y.; Yang, Z. D.; Wang, X.; Wang, L. P. et al. Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv. Mater., in press, https://doi.org/10.1002/adma.202209288.

  17. Yang, H.; Feng, Z. X.; Teng, X. L.; Guan, L.; Hu, H.; Wu, M. B. Three-dimensional printing of high-mass loading electrodes for energy storage applications. InfoMat 2021, 3, 631–647.

    CAS  Google Scholar 

  18. Yang, H.; Wan, Y.; Sun, K.; Zhang, M. D.; Wang, C. Z.; He, Z. Q.; Li, Q.; Wang, N.; Zhang, Y. L.; Hu, H. et al. Reconciling mass loading and gravimetric performance of MnO2 cathodes by 3D-printed carbon structures for zinc-ion batteries. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202215076.

  19. Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

    CAS  Google Scholar 

  20. Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 124, 957–959.

    Google Scholar 

  21. Fu, Y. Q.; Wei, Q. L.; Zhang, G. X.; Wang, X. M.; Zhang, J. H.; Hu, Y. F.; Wang, D. N.; Zuin, L.; Zhou, T.; Wu, Y. C. et al. High-performance reversible aqueous Zn-ion battery based on porous MnOx nanorods coated by MOF-derived N-doped carbon. Adv. Energy Mater. 2018, 8, 1801445.

    Google Scholar 

  22. Gou, L.; Li, J. R.; Liang, K.; Zhao, S. P.; Li, D. L.; Fan, X. Y. BiMOF modulating MnO2 deposition enables ultra-stable cathode-free aqueous zinc-ion batteries. Small, in press, https://doi.org/10.1002/smll.202208233.

  23. Ding, Y. X.; Zhang, S. W.; Li, J. Z.; Sun, Y.; Yin, B. S.; Li, H.; Ma, Y.; Wang, Z. Q.; Ge, H.; Su, D. W. et al. Enhanced elastic migration of magnesium cations in alpha-manganese dioxide tunnels locally tuned by aluminium substitution. Adv. Funct. Mater. 2023, 33, 2210519.

    CAS  Google Scholar 

  24. Guo, Y.; Li, L.; Song, L.; Wu, M. Z.; Gao, Y. H.; Chen, J. S.; Mao, C. J.; Song, J. M.; Niu, H. L. Co2+ induced phase transformation from δ- to α-MnO2 and their hierarchical α-MnO2@δ-MnO2 nanostructures for efficient asymmetric supercapacitors. J. Mater. Chem. A 2019, 7, 12661–12668.

    CAS  Google Scholar 

  25. Lian, S. T.; Sun, C. L.; Xu, W. N.; Huo, W. C.; Luo, Y. Z.; Zhao, K. N.; Yao, G.; Xu, W. W.; Zhang, Y. X.; Li, Z. et al. Built-in oriented electric field facilitating durable Zn-MnO2 battery. Nano Energy 2019, 62, 79–84.

    CAS  Google Scholar 

  26. Chen, X. J.; Li, W.; Xu, Y. B.; Zeng, Z. P.; Tian, H. C.; Velayutham, M.; Shi, W. Y.; Li, W. Y.; Wang, C. M.; Reed, D. et al. Charging activation and desulfurization of MnS unlock the active sites and electrochemical reactivity for Zn-ion batteries. Nano Energy 2020, 75, 104869.

    CAS  Google Scholar 

  27. Huang, J. D.; Zeng, J.; Zhu, K. J.; Zhang, R. Z.; Liu, J. High-performance aqueous zinc-manganese battery with reversible Mn2+/Mn4+ double redox achieved by carbon coated MnOx nanoparticles. Nano-Micro Lett. 2020, 12, 110.

    CAS  Google Scholar 

  28. Zhao, Y. J.; Zhang, P. J.; Liang, J. R.; Xia, X. Y.; Ren, L. T.; Song, L.; Liu, W.; Sun, X. M. Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery. Energy Storage Mater. 2022, 47, 424–433.

    Google Scholar 

  29. Zhu, J. X.; Xia, L. X.; Yang, W. X.; Yu, R. H.; Zhang, W.; Luo, W.; Dai, Y. H.; Wei, W.; Zhou, L.; Zhao, Y. et al. Activating inert sites in cobalt silicate hydroxides for oxygen evolution through atomically doping. Energy Environ. Mater. 2022, 5, 655–661.

    CAS  Google Scholar 

  30. Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Google Scholar 

  31. Zhao, Q. H.; Song, A. Y.; Zhao, W. G.; Qin, R. Z.; Ding, S. X.; Chen, X.; Song, Y. L.; Yang, L. Y.; Lin, H.; Li, S. N. et al. Boosting the energy density of aqueous batteries via facile grotthuss proton transport. Angew. Chem., Int. Ed. 2021, 60, 4169–4174.

    CAS  Google Scholar 

  32. Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

    CAS  Google Scholar 

  33. Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

    CAS  Google Scholar 

  34. Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, Y. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

    CAS  Google Scholar 

  35. Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

    CAS  Google Scholar 

  36. Persson, I.; Halim, J.; Hansen, T. W.; Wagner, J. B.; Darakchieva, V.; Palisaitis, J.; Rosen, J.; Persson, P. O. Å. How much oxygen can a MXene surface take before it breaks? Adv. Funct. Mater. 2020, 30, 1909005.

    CAS  Google Scholar 

  37. Liu, N.; Li, Q. Q.; Wan, H. J.; Chang, L. B.; Wang, H.; Fang, J. H.; Ding, T. P.; Wen, Q. Y.; Zhou, L. J.; Xiao, X. High-temperature stability in air of Ti3C2Tx MXene-based composite with extracted bentonite. Nat. Commun. 2022, 13, 5551.

    Google Scholar 

  38. Zhu, J. X.; Xia, L. X.; Yu, R. H.; Lu, R. H.; Li, J. T.; He, R. H.; Wu, Y. C.; Zhang, W.; Hong, X. F.; Chen, W. et al. Ultrahigh stable methanol oxidation enabled by a high hydroxyl concentration on Pt clusters/MXene interfaces. J. Am. Chem. Soc. 2022, 144, 15529–15538.

    CAS  Google Scholar 

  39. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    CAS  Google Scholar 

  40. Zhang, S. L.; Ying, H. J.; Huang, P. F.; Yang, T. T.; Han, W. Q. Hierarchical utilization of raw Ti3C2Tx MXene for fast preparation of various Ti3C2Tx MXene derivatives. Nano Res. 2022, 15, 2746–2755.

    CAS  Google Scholar 

  41. Zhang, Y.; Kang, C.; Zhao, W.; Sun, B. Y.; Xiao, X. J.; Huo, H.; Ma, Y. L.; Zuo, P. J.; Lou, S. F.; Yin, G. P. Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries. Energy Storage Mater. 2022, 47, 178–186.

    Google Scholar 

  42. Tian, Y. Y.; Tian, Y.; Huang, P.; Wang, L.; Shi, Q. F.; Cui, C. Effect of Yb3+ concentration on upconversion luminescence and temperature sensing behavior in Yb3+/Er3+ co-doped YNbO4 nanoparticles prepared via molten salt route. Chem. Eng. J. 2016, 297, 26–34.

    CAS  Google Scholar 

  43. Xiong, T.; Yu, Z. G.; Wu, H. J.; Du, Y. H.; Xie, Q. D.; Chen, J. S.; Zhang, Y. W.; Pennycook, S. J.; Lee, W. S. V.; Xue, J. M. Defect engineering of oxygen-deficient manganese oxide to achieve high-performing aqueous zinc ion battery. Adv. Energy Mater. 2019, 9, 1803815.

    Google Scholar 

  44. Zhang, A. Q.; Zhao, R.; Hu, L. Y.; Yang, R.; Yao, S. Y.; Wang, S. Y.; Yang, Z. Y.; Yan, Y. M. Adjusting the coordination environment of Mn enhances supercapacitor performance of MnO2. Adv. Energy Mater. 2021, 11, 2101412.

    CAS  Google Scholar 

  45. Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

    CAS  Google Scholar 

  46. Hao, Y. Z.; Wang, S. Z.; Shao, Y. L.; Wu, Y. Z.; Miao, S. D. High-energy density Li-ion capacitor with layered SnS2/reduced graphene oxide anode and BCN nanosheet cathode. Adv. Energy Mater. 2020, 10, 1902836.

    CAS  Google Scholar 

  47. Chen, P. H.; Zhou, W. Y.; Xiao, Z. J.; Li, S. Q.; Chen, H. L.; Wang, Y. C.; Wang, Z. B.; Xi, W.; Xia, X. G.; Xie, S. S. In situ anchoring MnO nanoparticles on self-supported 3D interconnected graphene scroll framework: A fast kinetics boosted ultrahigh-rate anode for Li-ion capacitor. Energy Storage Mater. 2020, 33, 298–308.

    Google Scholar 

  48. Li, H. X.; Lang, J. W.; Lei, S. L.; Chen, J. T.; Wang, K. J.; Liu, L. Y.; Zhang, T. Y.; Liu, W. S.; Yan, X. B. A high-performance sodium-ion hybrid capacitor constructed by metal-organic framework-derived anode and cathode materials. Adv. Funct. Mater. 2018, 28, 1800757.

    Google Scholar 

  49. Zhang, N. N.; Huang, S.; Yuan, Z. S.; Zhu, J. C.; Zhao, Z. F.; Niu, Z. Q. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 2861–2865.

    CAS  Google Scholar 

  50. Sun, W.; Wang, F.; Hou, S.; Yang, C. Y.; Fan, X. L.; Ma, Z. H.; Gao, T.; Han, F. D.; Hu, R. Z.; Zhu, M. et al. Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778.

    CAS  Google Scholar 

  51. Wu, B. K.; Zhang, G. B.; Yan, M. Y.; Xiong, T. F.; He, P.; He, L.; Xu, X.; Mai, L. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small 2018, 14, 1703850.

    Google Scholar 

  52. Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J. J.; Pham, D. T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J. A layered 5-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121–125.

    CAS  Google Scholar 

  53. Long, J.; Gu, J. X.; Yang, Z. H.; Mao, J. F.; Hao, J. N.; Chen, Z. F.; Guo, Z. P. Highly porous, low band-gap NixMn3−xO4 (0.55 ≤ x ≤ 1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries. J. Mater. Chem. A 2019, 7, 17854–17866.

    CAS  Google Scholar 

  54. Ma, Y.; Ma, Y. J.; Diemant, T.; Cao, K. C.; Liu, X.; Kaiser, U.; Behm, R. J.; Varzi, A.; Passerini, S. Unveiling the intricate intercalation mechanism in manganese sesquioxide as positive electrode in aqueous Zn-metal battery. Adv. Energy Mater. 2021, 11, 2100962.

    CAS  Google Scholar 

  55. Tang, H.; Chen, W. H.; Li, N.; Hu, Z. L.; Xiao, L.; Xie, Y. J.; Xi, L. J.; Ni, L.; Zhu, Y. R. Layered MnO2 nanodots as high-rate and stable cathode materials for aqueous zinc-ion storage. Energy Storage Mater. 2022, 48, 335–343.

    Google Scholar 

  56. Yu, W. T.; Shang, W. X.; He, Y.; Zhao, Z. X.; Ma, Y. Y.; Tan, P. Unraveling the mechanism of non-uniform zinc deposition in rechargeable zinc-based batteries with vertical orientation. Chem. Eng. J. 2022, 431, 134032.

    CAS  Google Scholar 

  57. Luo, H.; Wang, L. P.; Ren, P. H.; Jian, J. H.; Liu, X.; Niu, C. J.; Chao, D. L. Atomic engineering promoted electrooxidation kinetics of manganese-based cathode for stable aqueous zinc-ion batteries. Nano Res. 2022, 15, 8603–8612.

    CAS  Google Scholar 

  58. Han, M. M.; Huang, J. W.; Liang, S. Q.; Shan, L. T.; Xie, X. S.; Yi, Z. Y.; Wang, Y. R.; Guo, S.; Zhou, J. Oxygen defects in β-MnO2 enabling high-performance rechargeable aqueous zinc/manganese dioxide battery. iScience 2020, 23, 100797.

    CAS  Google Scholar 

  59. Zhang, Y. X.; Cui, X. S.; Liu, Y. P.; Cheng, S. T.; Cui, P.; Wu, Y.; Sun, Z. H.; Shao, Z. P.; Fu, J. C.; Xie, E. Q. Aqueous Zn-MnO2 battery: Approaching the energy storage limit with deep Zn2+ pre-intercalation and revealing the ions insertion/extraction mechanisms. J. Energy Chem. 2022, 67, 225–232.

    CAS  Google Scholar 

  60. Shi, M. J.; Xiao, P.; Yang, C.; Sheng, Y.; Wang, B.; Jiang, J. T.; Zhao, L. P.; Yan, C. Scalable gas-phase synthesis of 3D microflowers confining MnO2 nanowires for highly-durable aqueous zinc-ion batteries. J. Power Sources 2020, 463, 228209.

    CAS  Google Scholar 

  61. Si, G. R.; Yang, F.; He, T.; Kong, X. J.; Wu, W.; Li, T. C.; Wang, K. C.; Li, J. R. Enhancing proton conductivity in Zr-MOFs through tuning metal cluster connectivity. J. Mater. Chem. A 2022, 10, 1236–1240.

    CAS  Google Scholar 

  62. Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21975258, 22179145, 22005341, and 21878336), the startup support grant from China University of Petroleum (East China), and Shandong Provincial Natural Science Foundation (Nos. ZR2020ZD08 and ZR2018ZC1458).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukun Lu or Han Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Yang, H., Wang, B. et al. Dual cation doping enabling simultaneously boosted capacity and rate capability of MnO2 cathodes for Zn//MnO2 batteries. Nano Res. 16, 9488–9495 (2023). https://doi.org/10.1007/s12274-023-5717-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5717-8

Keywords

Navigation