Skip to main content
Log in

Interfacial synergism of hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts enable highly selective hydrogenolysis of glycerol to 1,3-propanediol

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The selective hydrogenolysis of glycerol exhibits great prospects, while the catalysts with high selectivity and activity are still missing and need to be created urgently. Herein, we report the synthesis of hollow mesoporous Pt/WOxSiO2-TiO2 nanosphere catalysts with bi-functional interfaces synergistically for high efficiency conversion of glycerol to 1,3-propanediol. The hollow mesoporous Pt/WOxSiO2-TiO2 catalysts show a typical brick-concrete liked framework with a high surface area (179.3 m2g·1), large mesopore size (10.6 nm), uniform particle size (~ 400 nm), and ultrathin shell thickness (~ 75 nm). The brick anatase nanocrystals and concrete amorphous SiO2 networks can selectively rivet Pt nanoparticles and WOx nanocluster species, respectively, thus constructing two interfaces for effective adsorption, rapidly catalytic dehydration and hydrogenation processes. The hollow mesoporous Pt/WOxSiO2-TiO2 catalysts deliver a high selectivity of 53.8% for 1,3-propanediol (1,3-PDO) at a very high glycerol conversion of 85.0%. As a result, a favorable 1,3-PDO yield of 45.7% can be obtained with excellent stability, which is among the best performances of previously reported catalysts. This work paves a new way to synthesize catalysts with high selectivity, high activity and high stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, H. W.; Abdul Aziz, A. R.; Aroua, M. K. Glycerol production and its applications as a raw material: A review. Renew. Sust. Energy Rev. 2013, 27, 118–127.

    CAS  Google Scholar 

  2. Yang, F. X.; Hanna, M. A.; Sun, R. C. Value-added uses for crude glycerol—A byproduct of biodiesel production. Biotechnol. Biofuels 2012, 5, 13.

    CAS  Google Scholar 

  3. Zhou, C. H.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev. 2008, 37, 527–549.

    Google Scholar 

  4. Zhang, X.; Cui, G. Q.; Feng, H. S.; Chen, L. F.; Wang, H.; Wang, B.; Zhang, X.; Zheng, L. R.; Hong, S.; Wei, M. Platinum-copper single atom alloy catalysts with high performance towards glycerol hydrogenolysis. Nat. Commun. 2019, 10, 5812.

    CAS  Google Scholar 

  5. Sun, D. L.; Yamada, Y.; Sato, S.; Ueda, W. Glycerol hydrogenolysis into useful C3 chemicals. Appl. Catal. B 2016, 193, 75–92.

    CAS  Google Scholar 

  6. Bhowmik, S.; Darbha, S. Advances in solid catalysts for selective hydrogenolysis of glycerol to 1,3-propanediol. Catal. Rev. 2021, 63, 639–703.

    CAS  Google Scholar 

  7. Wang, J.; Yang, M.; Wang, A. Q. Selective hydrogenolysis of glycerol to 1,3-propanediol over Pt-W based catalysts. Chin. J. Catal. 2020, 41, 1311–1319.

    CAS  Google Scholar 

  8. Fan, Y. Q.; Cheng, S. J.; Wang, H.; Tian, J.; Xie, S. H.; Pei, Y.; Qiao, M. H.; Zong, B. N. Pt-WOx on monoclinic or tetrahedral ZrO2: Crystal phase effect of zirconia on glycerol hydrogenolysis to 1,3-propanediol. Appl. Catal. B 2017, 217, 331–341.

    CAS  Google Scholar 

  9. Miao, G.; Shi, L.; Zhou, Z. M.; Zhu, L. J.; Zhang, Y. F.; Zhao, X. P.; Luo, H.; Li, S. G.; Kong, L. Z.; Sun, Y. H. Catalyst design for selective hydrodeoxygenation of glycerol to 1,3-propanediol. ACS Catal. 2020, 10, 15217–15226.

    CAS  Google Scholar 

  10. Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Cui, J. L.; Zheng, H. Y.; Li, Y. W. SiO2 promoted Pt/WOx/ZrO2 catalysts for the selective hydrogenolysis of glycerol to 1,3-propanediol. Appl. Catal. B 2014, 158–159, 391–399.

    Google Scholar 

  11. Numpilai, T.; Cheng, C. K.; Seubsai, A.; Faungnawakij, K.; Limtrakul, J.; Witoon, T. Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions. Environ. Pollut. 2021, 272, 116029.

    CAS  Google Scholar 

  12. Zhou, W.; Luo, J.; Wang, Y.; Liu, J. F.; Zhao, Y. J.; Wang, S. P.; Ma, X. B. WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2. Appl. Catal. B 2019, 242, 410–421.

    CAS  Google Scholar 

  13. Zhao, X. C.; Wang, J.; Yang, M.; Lei, N.; Li, L.; Hou, B. L.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Selective hydrogenolysis of glycerol to 1,3-Propanediol: Manipulating the frustrated lewis pairs by introducing gold to Pt/WOx. ChemSusChem 2017, 10, 819–824.

    CAS  Google Scholar 

  14. Liu, L. J.; Asano, T.; Nakagawa, Y.; Gu, M. Y.; Li, C. C.; Tamura, M.; Tomishige, K. Structure and performance relationship of silica-supported platinum-tungsten catalysts in selective C-O hydrogenolysis of glycerol and 1,4-anhydroerythritol. Appl. Catal. B 2021, 292, 120164.

    CAS  Google Scholar 

  15. Gong, L. F.; Lu, Y.; Ding, Y. J.; Lin, R. H.; Li, J. W.; Dong, W. D.; Wang, T.; Chen, W. M. Selective hydrogenolysis of glycerol to 1,3-propanediol over a Pt/WO3/TiO2/SiO2 catalyst in aqueous media. Appl. Catal. A 2010, 390, 119–126.

    CAS  Google Scholar 

  16. Fernández, S. G.; Gandarias, I.; Requies, J.; Soulimani, F.; Arias, P. L.; Weckhuysen, B. M. The role of tungsten oxide in the selective hydrogenolysis of glycerol to 1,3-propanediol over Pt/WOx/Al2O3. Appl. Catal. B 2017, 204, 260–272.

    Google Scholar 

  17. Wan, X. K.; Wu, H. B.; Guan, B. Y.; Luan, D. Y.; Lou, X. W. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv. Mater. 2020, 32, 1901349.

    CAS  Google Scholar 

  18. Kuang, P. Y.; Wang, Y. R.; Zhu, B. C.; Xia, F. J.; Tung, C. W.; Wu, J. S.; Chen, H. M.; Yu, J. G. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv. Mater. 2021, 33, 2008599.

    CAS  Google Scholar 

  19. Chen, J. Y.; Kang, Y. K.; Zhang, W.; Zhang, Z. H.; Chen, Y.; Yang, Y.; Duan, L. L.; Li, Y. F.; Li, W. Lattice-confined single-atom Fe1Sx on mesoporous TiO2 for boosting ambient electrocatalytic N2 reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202203022.

    CAS  Google Scholar 

  20. Duan, L. L.; Hung, C. T.; Wang, J. X.; Wang, C. Y.; Ma, B.; Zhang, W.; Ma, Y. Z.; Zhao, Z. W.; Yang, C. C.; Zhao, T. C. et al. Synthesis of fully exposed single-atom-layer metal clusters on 2D ordered mesoporous TiO2 nanosheets. Angew. Chem., Int. Ed. 2022, 61, e202211307.

    CAS  Google Scholar 

  21. Hung, C. T.; Duan, L. L.; Zhao, T. C.; Liu, L. L.; Xia, Y.; Liu, Y. P.; Qiu, P. P.; Wang, R. C.; Zhao, Z. W.; Li, W. et al. Gradient hierarchically porous structure for rapid capillary-assisted catalysis. J. Am. Chem. Soc. 2022, 144, 6091–6099.

    CAS  Google Scholar 

  22. Wang, H.; Wang, L.; Zhang, J.; Wang, C. T.; Liu, Z. Y.; Gao, X. H.; Meng, X. J.; Yoo, S. J.; Kim, J. G.; Zhang, W. et al. Interfacial CoOx layers on TiO2 as an efficient catalyst for solvent-free aerobic oxidation of hydrocarbons. ChemSusChem 2018, 11, 3965–3974.

    CAS  Google Scholar 

  23. Jin, Z.; Yi, X. F.; Wang, L.; Xu, S. D.; Wang, C. T.; Wu, Q. M.; Wang, L. X.; Zheng, A. M.; Xiao, F. S. Metal–acid interfaces enveloped in zeolite crystals for cascade biomass hydrodeoxygenation. Appl. Catal. B 2019, 254, 560–568.

    CAS  Google Scholar 

  24. Zhang, R.; Wang, X.; Wang, K.; Wang, H. L.; Liu, L.; Wu, X. T.; Geng, B. K.; Chu, X.; Song, S. Y.; Zhang, H. J. Synergism of ultrasmall Pt clusters and basic La2O2CO3 supports boosts the reverse water gas reaction efficiency. Adv. Energy Mater. 2023, 13, 2203806.

    CAS  Google Scholar 

  25. Wang, C. T.; Guan, E. J.; Wang, L.; Chu, X. F.; Wu, Z. Y.; Zhang, J.; Yang, Z. Y.; Jiang, Y. W.; Zhang, L.; Meng, X. J. et al. Product selectivity controlled by nanoporous environments in zeolite crystals enveloping rhodium nanoparticle catalysts for CO2 hydrogenation. J. Am. Chem. Soc. 2019, 141, 8482–8488.

    CAS  Google Scholar 

  26. Sun, Y. F.; Cao, Y. Q.; Wang, L. L.; Mu, X. T.; Zhao, Q. F.; Si, R.; Zhu, X. J.; Chen, S. J.; Zhang, B. S.; Chen, D. et al. Gold catalysts containing interstitial carbon atoms boost hydrogenation activity. Nat. Commun. 2020, 11, 4600.

    CAS  Google Scholar 

  27. An, K.; Musselwhite, N.; Kennedy, G.; Pushkarev, V. V.; Baker, L. R.; Somorjai, G. A. Preparation of mesoporous oxides and their support effects on Pt nanoparticle catalysts in catalytic hydrogenation of furfural. J. Colloid Interface Sci. 2033, 392, 122–128.

    Google Scholar 

  28. Kattel, S.; Yan, B. H.; Chen, J. G.; Liu, P. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support. J. Catal. 2016, 343, 115–126.

    CAS  Google Scholar 

  29. Liu, J. J.; Zou, S. H.; Lu, L. F.; Zhao, H. T.; Xiao, L. P.; Fan, J. Room temperature selective oxidation of benzyl alcohol under basefree aqueous conditions on Pt/TiO2. Catal. Commun. 2017, 99, 6–9.

    CAS  Google Scholar 

  30. Byun, M. Y.; Kim, Y. E.; Baek, J. H.; Jae, J.; Lee, M. S. Effect of surface properties of TiO2 on the performance of Pt/TiO2 catalysts for furfural hydrogenation. RSC Adv. 2022, 12, 860–868.

    CAS  Google Scholar 

  31. Zeng, Y.; Jiang, L.; Zhang, X. X.; Xie, S. H.; Pei, Y.; Zhou, G. B.; Hua, W. M.; Qiao, M. H.; Li, Z. H.; Zong, B. N. Effect of titania polymorphs on the structure and catalytic performance of the Pt-WOx/TiO2 catalyst in glycerol hydrogenolysis to 1,3-propanediol. ACS Sustainable Chem. Eng. 2022, 10, 9532–9545.

    CAS  Google Scholar 

  32. Zhao, J. X.; Hou, B.; Guo, H. Q.; Jia, L. T.; Niu, P. Y.; Chen, C. B.; Xi, H. J.; Li, D. B.; Zhang, J. L. Insight into the influence of WOx–support interaction over Pt/W/SiZr catalysts on 1,3-propanediol synthesis from glycerol. ChemCatChem 2022, 14, e202200341.

    CAS  Google Scholar 

  33. Li, W.; Wang, F.; Feng, S. S.; Wang, J. X.; Sun, Z. K.; Li, B.; Li, Y. H.; Yang, J. P.; Elzatahry, A. A.; Xia, Y. Y. et al. Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for highperformance lithium ion batteries. J. Am. Chem. Soc. 2013, 135, 18300–18303.

    CAS  Google Scholar 

  34. Li, W.; Wang, F.; Liu, Y. P.; Wang, J. X.; Yang, J. P.; Zhang, L. J.; Elzatahry, A. A.; Al-Dahyan, D.; Xia, Y. Y.; Zhao, D. Y. General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. Nano Lett. 2015, 15, 2186–2193.

    CAS  Google Scholar 

  35. Deng, Z. Q.; Li, L.; Ren, Y. C.; Ma, C. Q.; Liang, J.; Dong, K.; Liu, Q.; Luo, Y. L.; Li, T. S.; Tang, B. et al. Highly efficient two-electron electroreduction of oxygen into hydrogen peroxide over Cu-doped TiO2. Nano Res. 2022, 15, 3880–3885.

    CAS  Google Scholar 

  36. Ma, J. H.; Ren, Y.; Zhou, X. R.; Liu, L. L.; Zhu, Y. H.; Cheng, X. W.; Xu, P. C.; Li, X. X.; Deng, Y. H.; Zhao, D. Y. Pt nanoparticles sensitized ordered mesoporous WO3 semiconductor: Gas sensing performance and mechanism study. Adv. Funct. Mater. 2018, 28, 1705268.

    Google Scholar 

  37. Drzymała, E.; Gruzeł, G.; Depciuch, J.; Pawlyta, M.; Donten, M.; Parlinska-Wojtan, M. Ternary Pt/Re/SnO2/C catalyst for EOR: Electrocatalytic activity and durability enhancement. Nano Res. 2020, 13, 832–842.

    Google Scholar 

  38. Hernandez-Pichardo, M. L.; Montoya de la Fuente, J. A.; Del Angel, P.; Vargas, A.; Navarrete, J.; Hernandez, I.; Lartundo, L.; González-Brambila, M. High-throughput study of the iron promotional effect over Pt/WOx-ZrO2 catalysts on the skeletal isomerization of n-hexane. Appl. Catal. A 2012, 431–432, 69–78.

    Google Scholar 

  39. Ross-Medgaarden, E. I.; Knowles, W. V.; Kim, T.; Wong, M. S.; Zhou, W.; Kiely, C. J.; Wachs, I. E. New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts. J. Catal. 2008, 256, 108–125.

    CAS  Google Scholar 

  40. Shen, S. H.; Kronawitter, C. X.; Jiang, J. G.; Mao, S. S.; Guo, L. J. Surface tuning for promoted charge transfer in hematite nanorod arrays as water-splitting photoanodes. Nano Res. 2012, 5, 327–336.

    CAS  Google Scholar 

  41. Ramezanzadeh, B.; Haeri, Z.; Ramezanzadeh, M. A facile route of making silica nanoparticles-covered graphene oxide nanohybrids (SiO2-GO); fabrication of SiO2-GO/epoxy composite coating with superior barrier and corrosion protection performance. Chem. Eng. J. 2016, 303, 511–528.

    CAS  Google Scholar 

  42. Wei, R. P.; Qu, X. M.; Xiao, Y.; Fan, J. D.; Geng, G. L.; Gao, L. J.; Xiao, G. M. Hydrogenolysis of glycerol to propanediols over silicotungstic acid catalysts intercalated with CuZnFe hydrotalcite-like compounds. Catal. Today 2021, 368, 224–231.

    CAS  Google Scholar 

  43. Wang, B.; Liu, F.; Guan, W. X.; Wang, A. Q.; Zhang, T. Promoting the effect of Au on the selective hydrogenolysis of glycerol to 1, 3-propanediol over the Pt/WOx/Al2O3 catalyst. ACS Sustainable Chem. Eng. 2021, 9, 5705–5715.

    CAS  Google Scholar 

  44. Fan, Y. Q.; Cheng, S. J.; Wang, H.; Ye, D. H.; Xie, S. H.; Pei, Y.; Hu, H. R.; Hua, W. M.; Li, Z. H.; Qiao, M. H. et al. Nanoparticulate Pt on mesoporous SBA-15 doped with extremely low amount of W as a highly selective catalyst for glycerol hydrogenolysis to 1,3-propanediol. Green Chem. 2017, 19, 2174–2183.

    CAS  Google Scholar 

  45. Niu, Y. F.; Zhao, B. B.; Liang, Y.; Liu, L.; Dong, J. X. Promoting role of oxygen deficiency on a WO3-supported Pt catalyst for glycerol hydrogenolysis to 1, 3-propanediol. Ind. Eng. Chem. Res. 2020, 59, 7389–7397.

    CAS  Google Scholar 

  46. He, J. Y.; Burt, S. P.; Ball, M.; Zhao, D. T.; Hermans, I.; Dumesic, J. A.; Huber, G. W. Synthesis of 1,6-hexanediol from cellulose derived tetrahydrofuran-dimethanol with Pt-WOx/TiO2 catalysts. ACS Catal. 2018, 8, 1427–1439.

    CAS  Google Scholar 

  47. Wang, H. L.; Bootharaju, M. S.; Kim, J. H.; Wang, Y.; Wang, K.; Zhao, M.; Zhang, R.; Xu, J.; Hyeon, T.; Wang, X. et al. Synergistic interactions of neighboring platinum and iron atoms enhance reverse water–gas shift reaction performance. J. Am. Chem. Soc. 2023, 145, 2264–2270.

    CAS  Google Scholar 

  48. Wang, J.; Zhao, X. C.; Lei, N.; Li, L.; Zhang, L. L.; Xu, S. T.; Miao, S.; Pan, X. L.; Wang, A. Q.; Zhang, T. Hydrogenolysis of glycerol to 1,3-propanediol under low hydrogen pressure over WOx.-supported single/pseudo-single atom Pt catalyst. ChemSusChem 2016, 9, 784–790.

    CAS  Google Scholar 

  49. Wu, Z. F.; Li, Y. Y.; Huang, W. X. Size-dependent Pt-TiO2 strong metal-support interaction. J. Phys. Chem. Lett. 2020, 17, 4603–4607.

    Google Scholar 

  50. Yamazoe, S.; Hitomi, Y.; Shishido, T.; Tanaka, T. XAFS study of tungsten L1- and L3-edges: Structural analysis of WO3 species loaded on TiO2 as a catalyst for photo-oxidation of NH3. J. Phys. Chem. C 2008, 112, 6869–6879.

    CAS  Google Scholar 

  51. Tian, H.; Cui, X. Z.; Zeng, L. M.; Su, L.; Song, Y. L.; Shi, J. L. Oxygen vacancy-assisted hydrogen evolution reaction of the Pt/WO3 electrocatalyst. J. Mater. Chem. A 2019, 7, 6285–6293.

    CAS  Google Scholar 

  52. Cheng, S. J.; Fan, Y. Q.; Zhang, X. X.; Zeng, Y.; Xie, S. H.; Pei, Y.; Zeng, G. F.; Qiao, M. H.; Zong, B. N. Tungsten-doped siliceous mesocellular foams-supported platinum catalyst for glycerol hydrogenolysis to 1,3-propanediol. Appl. Catal. B 2021, 297, 120428.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key R&D Program of China (Nos. 2022YFA1503501 and 2018YFA0209401), the National Natural Science Foundation of China (Nos. 22088101, 21975050 and U21A20329), the Program of Shanghai Academic Research Leader (No. 21XD1420800), the Shanghai Pilot Program for Basic Research-Fudan University 21TQ1400100 (No. 21TQ008), and the Fundamental Research Funds for the Central Universities (No. 20720220010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Electronic Supplementary Material

12274_2023_5712_MOESM1_ESM.pdf

Interfacial synergism of hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts enable highly selective hydrogenolysis of glycerol to 1,3-propanediol

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zeng, Y., Hung, CT. et al. Interfacial synergism of hollow mesoporous Pt/WOx/SiO2-TiO2 catalysts enable highly selective hydrogenolysis of glycerol to 1,3-propanediol. Nano Res. 16, 9081–9090 (2023). https://doi.org/10.1007/s12274-023-5712-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5712-0

Keywords

Navigation