Skip to main content
Log in

Enhanced electroreduction of CO2 to C2+ fuels by the synergetic effect of polyaniline/CuO nanosheets hybrids

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Electrochemically converting CO2 to value-added multi-carbon (C2+) fuels and chemicals is a favorable way to achieve carbon neutrality. Herein, polyaniline/CuO nanosheets (PANI/CuO NSs) hybrid electrocatalysts are developed in order to achieve superior C2+ selectivity by imparting PANI functional component to the CuO NSs. The decorated PANI nanoparticles (NPs) can effectively stabilize the *CO intermediates and increase their coverage on the active Cu sites, which facilitates the C–C coupling to form multi-carbon products. Benefiting from the synergetic effect of PANI and CuO NSs, best Faradaic efficiency (FE) for C2+ product up to 66.4% at −1.6 V vs. reversible hydrogen electrode (RHE) in a H-cell measurement and 60.0% at 400 mA·cm−2 in a flow cell measurement are demonstrated by PANI/CuO NSs-25 sample. More importantly, the C2+ selectivity keeps stable even in a continuous measurement time period of 92 h in H-cell measurement. The present study may provide more insights for designing efficient hybrid materials toward superior C2+ production from electrocatalytic CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

    CAS  Google Scholar 

  2. Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

    CAS  Google Scholar 

  3. Jordaan, S. M.; Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat. Catal. 2021, 4, 915–920.

    Google Scholar 

  4. Zhang, Z. D.; Zhu, J. X.; Chen, S. H.; Sun, W. M.; Wang, D. S. Liquid fluxional Ga single atom catalysts for efficient electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2023, 62, e202215136.

    CAS  Google Scholar 

  5. Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem., Int. Ed. 2022, 61, e202114450.

    CAS  Google Scholar 

  6. Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.

    CAS  Google Scholar 

  7. Wang, X.; Wang, Z. Y.; García De Arquer, F. P.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 2020, 5, 478–486.

    CAS  Google Scholar 

  8. Li, M. H.; Song, N.; Luo, W.; Chen, J.; Jiang, W.; Yang, J. P. Engineering surface oxophilicity of copper for electrochemical CO2 reduction to ethanol. Adv. Sci. 2023, 10, 2204579.

    CAS  Google Scholar 

  9. Nitopi, S.; Bertheussen, E.; Scott, S. B.; Liu, X. Y.; Engstfeld, A. K.; Horch, S.; Seger, B.; Stephens, I. E. L.; Chan, K.; Hahn, C. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 2019, 119, 7610–7672.

    CAS  Google Scholar 

  10. Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.

    CAS  Google Scholar 

  11. Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

    CAS  Google Scholar 

  12. Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

    CAS  Google Scholar 

  13. Kong, X. D.; Zhao, J. K.; Ke, J. W.; Wang, C.; Li, S. J.; Si, R.; Liu, B.; Zeng, J.; Geng, Z. G. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction. Nano Lett. 2022, 22, 3801–3808.

    CAS  Google Scholar 

  14. Calle-Vallejo, F.; Koper, M. T. M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem., Int. Ed. 2013, 52, 7282–7285.

    CAS  Google Scholar 

  15. Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

    CAS  Google Scholar 

  16. Liu, C. X.; Zhang, M. L.; Li, J. W.; Xue, W. Q.; Zheng, T. T.; Xia, C.; Zeng, J. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C–C coupling. Angew. Chem., Int. Ed. 2022, 61, e202113498.

    CAS  Google Scholar 

  17. Yang, P. P.; Zhang, X. L.; Gao, F. Y.; Zheng, Y. R.; Niu, Z. Z.; Yu, X. X.; Liu, R.; Wu, Z. Z.; Qin, S.; Chi, L. P. et al. Protecting copper oxidation state via intermediate confinement for selective CO2 electroreduction to C2+ Fuels. J. Am. Chem. Soc. 2020, 142, 6400–6408.

    CAS  Google Scholar 

  18. Wang, X. L.; De Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2-CO co-feeds on Cu and Cu-tandem electrocatalysts. Nat. Nanotechnol. 2019, 14, 1063–1070.

    CAS  Google Scholar 

  19. O’Mara, P. B.; Wilde, P.; Benedetti, T. M.; Andronescu, C.; Cheong, S.; Gooding, J. J.; Tilley, R. D.; Schuhmann, W. Cascade reactions in nanozymes: Spatially separated active sites inside Ag-core-porous-Cu-shell nanoparticles for multistep carbon dioxide reduction to higher organic molecules. J. Am. Chem. Soc. 2019, 141, 14093–14097.

    Google Scholar 

  20. Chen, C. B.; Li, Y. F.; Yu, S.; Louisia, S.; Jin, J. B.; Li, M. F.; Ross, M. B.; Yang, P. D. Cu-Ag tandem catalysts for high-rate CO2 electrolysis toward multicarbons. Joule 2020, 4, 1688–1699.

    CAS  Google Scholar 

  21. Shen, S. B.; Peng, X. Y.; Song, L. D.; Qiu, Y.; Li, C.; Zhuo, L. C.; He, J.; Ren, J. Q.; Liu, X. J.; Luo, J. AuCu alloy nanoparticle embedded Cu submicrocone arrays for selective conversion of CO2 to ethanol. Small 2019, 15, 1902229.

    Google Scholar 

  22. Baek, Y.; Song, H.; Hong, D.; Wang, S.; Lee, S.; Joo, Y. C.; Lee, G. D.; Oh, J. Electrochemical carbon dioxide reduction on copper-zinc alloys: Ethanol and ethylene selectivity analysis. J. Mater. Chem. A 2022, 10, 9393–9401.

    CAS  Google Scholar 

  23. Zhang, G.; Zhao, Z. J.; Cheng, D. F.; Li, H. M.; Yu, J.; Wang, Q. Z.; Gao, H.; Guo, J. Y.; Wang, H. Y.; Ozin, G. A. et al. Efficient CO2 electroreduction on facet-selective copper films with high conversion rate. Nat. Commun. 2021, 12, 5745.

    CAS  Google Scholar 

  24. Li, F. W.; Li, Y. C.; Wang, Z. Y.; Li, J.; Nam, D. H.; Lum, Y.; Luo, M. C.; Wang, X.; Ozden, A.; Hung, S. F. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat. Catal. 2020, 3, 75–82.

    CAS  Google Scholar 

  25. Hori, Y.; Kikuchi, K.; Murata, A.; Suzuki, S. Production of methane and ethylene in electrochemical reduction of carbon dioxide at copper electrode in aqueous hydrogencarbonate solution. Chem. Lett. 1986, 15, 897–898.

    Google Scholar 

  26. Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

    CAS  Google Scholar 

  27. Luc, W.; Fu, X. B.; Shi, J. J.; Lv, J. J.; Jouny, M.; Ko, B. H.; Xu, Y. B.; Tu, Q.; Hu, X. B.; Wu, J. S. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2019, 2, 423–430.

    CAS  Google Scholar 

  28. Liu, W.; Zhai, P. B.; Li, A. W.; Wei, B.; Si, K. P.; Wei, Y.; Wang, X. G.; Zhu, G. D.; Chen, Q.; Gu, X. K. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.

    CAS  Google Scholar 

  29. Zhang, B. X.; Zhang, J. L.; Hua, M. L.; Wan, Q.; Su, Z. Z.; Tan, X. N.; Liu, L. F.; Zhang, F. Y.; Chen, G.; Tan, D. X. et al. Highly electrocatalytic ethylene production from CO2 on nanodefective Cu nanosheets. J. Am. Chem. Soc. 2020, 142, 13606–13613.

    CAS  Google Scholar 

  30. Li, P. S.; Lu, X.; Wu, Z. S.; Wu, Y. S.; Malpass-Evans, R.; McKeown, N. B.; Sun, X. M.; Wang, H. L. Acid-base interaction enhancing oxygen tolerance in electrocatalytic carbon dioxide reduction. Angew. Chem., Int. Ed. 2020, 59, 10918–10923.

    CAS  Google Scholar 

  31. Chen, X. Y.; Chen, J. F.; Alghoraibi, N. M.; Henckel, D. A.; Zhang, R. X.; Nwabara, U. O.; Madsen, K. E.; Kenis, P. J. A.; Zimmerman, S. C.; Gewirth, A. A. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 2021, 4, 20–27.

    Google Scholar 

  32. Jia, S. Q.; Zhu, Q. G.; Chu, M. G.; Han, S. T.; Feng, R. T.; Zhai, J. X.; Xia, W.; He, M. Y.; Wu, H. H.; Han, B. X. Hierarchical metal-polymer hybrids for enhanced CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 10977–10982.

    CAS  Google Scholar 

  33. Kebiche, H.; Poncin-Epaillard, F.; Haddaoui, N.; Debarnot, D. A route for the synthesis of polyaniline-based hybrid nanocomposites. J. Mater. Sci. 2020, 55, 5782–5794.

    CAS  Google Scholar 

  34. Cai, K. W.; Zuo, S. X.; Luo, S. P.; Yao, C.; Liu, W. J.; Ma, J. F.; Mao, H. H.; Li, Z. Y. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings. RSC Adv. 2016, 6, 95965–95972.

    CAS  Google Scholar 

  35. Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

    CAS  Google Scholar 

  36. Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

    CAS  Google Scholar 

  37. Lei, Q.; Zhu, H.; Song, K. P.; Wei, N. N.; Liu, L. M.; Zhang, D. L.; Yin, J.; Dong, X. L.; Yao, K. X.; Wang, N. et al. Investigating the origin of enhanced C2+ selectivity in oxide-/hydroxide-derived copper electrodes during CO2 electroreduction. J. Am. Chem. Soc. 2020, 142, 4213–4222.

    CAS  Google Scholar 

  38. Lyu, Z. H.; Zhu, S. Q.; Xie, M. H.; Zhang, Y.; Chen, Z. T.; Chen, R. H.; Tian, M. K.; Chi, M. F.; Shao, M. H.; Xia, Y. N. Controlling the surface oxidation of Cu nanowires improves their catalytic selectivity and stability toward C2+ products in CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 1909–1915.

    CAS  Google Scholar 

  39. Lyu, Z. H.; Xie, M. H.; Aldama, E.; Zhao, M.; Qiu, J. C.; Zhou, S.; Xia, Y. N. Au@Cu core–shell nanocubes with controllable sizes in the range of 20–30 nm for applications in catalysis and plasmonics. ACS Appl. Nano Mater. 2019, 2, 1533–1540.

    CAS  Google Scholar 

  40. Wang, Z. L.; Zhang, L.; Schülli, T. U.; Bai, Y.; Monny, S. A.; Du, A. J.; Wang, L. Z. Identifying copper vacancies and their role in the CuO based photocathode for water splitting. Angew. Chem., Int. Ed. 2019, 58, 17604–17609.

    CAS  Google Scholar 

  41. Lv, W. B.; Li, L.; Meng, Q. H.; Zhang, X. T. Molybdenum-doped CuO nanosheets on Ni foams with extraordinary specific capacitance for advanced hybrid supercapacitors. J. Mater. Sci. 2020, 55, 2492–2502.

    CAS  Google Scholar 

  42. Wei, X. F.; Li, Y.; Chen, L. S.; Shi, J. L. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem., Int. Ed. 2021, 60, 3148–3155.

    CAS  Google Scholar 

  43. Ling, P. H.; Zhang, Q.; Cao, T. T.; Gao, F. Versatile three-dimensional porous Cu@Cu2O aerogel networks as electrocatalysts and mimicking peroxidases. Angew. Chem., Int. Ed. 2018, 57, 6819–6824.

    CAS  Google Scholar 

  44. Dan, Z. H.; Yang, Y. L.; Qin, F. X.; Wang, H.; Chang, H. Facile fabrication of Cu2O nanobelts in ethanol on nanoporous Cu and their photodegradation of methyl orange. Materials 2018, 11, 446.

    Google Scholar 

  45. Sreedhar, B.; Sairam, M.; Chattopadhyay, D. K.; Mitra, P. P.; Rao, D. V. M. Thermal and XPS studies on polyaniline salts prepared by inverted emulsion polymerization. J. Appl. Polym. Sci. 2006, 101, 499–508.

    CAS  Google Scholar 

  46. Li, R. Z.; Wang, D. S. Understanding the structure–performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

    CAS  Google Scholar 

  47. Li, M. H.; Ma, Y. Y.; Chen, J.; Lawrence, R.; Luo, W.; Sacchi, M.; Jiang, W.; Yang, J. P. Residual chlorine induced cationic active species on a porous copper electrocatalyst for highly stable electrochemical CO2 reduction to C2+. Angew. Chem., Int. Ed. 2021, 60, 11487–11493.

    CAS  Google Scholar 

  48. Zhang, H.; Wang, C. Q.; Luo, H. X.; Chen, J. L.; Kuang, M.; Yang, J. P. Iron nanoparticles protected by chainmail-structured graphene for durable electrocatalytic nitrate reduction to nitrogen. Angew. Chem., Int. Ed. 2023, 62, e202217071.

    CAS  Google Scholar 

  49. Wei, X.; Yin, Z. L.; Lyu, K.; Li, Z.; Gong, J.; Wang, G. W.; Xiao, L.; Lu, J. T.; Zhuang, L. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces. ACS Catal. 2020, 10, 4103–4111.

    CAS  Google Scholar 

  50. Vijayakumar, A.; Zhao, Y.; Zou, J.; Wang, K.; Lee, C.-Y.; MacFarlane, D. R.; Wang, C.; Wallace, G. G. A self-assembled CO2 reduction electrocatalyst: posy-bouquest-shaped gold-polyaniline core-shell nanocomposite. ChemSusChem 2020, 13, 5023–5030.

    CAS  Google Scholar 

  51. Ahn, S.; Klyukin, K.; Wakeham, R. J.; Rudd, J. A.; Lewis, A. R.; Alexander, S.; Carla, F.; Alexandrov, V.; Andreoli, E. Poly-amide modified copper foam electrodes for enhanced electrochemical reduction of carbon dioxide. ACS Catal. 2018, 8, 4132–4142.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Analysis and Testing Center in Beijing Institute of Technology for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiling Li.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Geng, Q., Fan, L. et al. Enhanced electroreduction of CO2 to C2+ fuels by the synergetic effect of polyaniline/CuO nanosheets hybrids. Nano Res. 16, 9065–9072 (2023). https://doi.org/10.1007/s12274-023-5703-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5703-1

Keywords

Navigation