Skip to main content
Log in

Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Due to the high theoretical capacity and electrode potential, Prussian blue is regarded as promising cathode material for potassium ion batteries. However, inferior structural stability, poor electronic conductivity, and ambiguous energy storage mechanism have limited the application of Prussian blue materials. Herein, a highly stable Prussian blue-polypyrrole (PB-PPY) composite has been prepared by a facile one-step method. PB-PPY displays higher discharging capacity, better rate capacity, and longer cycling lifespan than that of pure Prussian blue in potassium ion batteries. The superior electrochemical performance can be attributed to the unique synthesis strategy to reduce the content of vacancies and crystal water in Prussian blue and enhance the conductivity. Furthermore, partial K ions have been evidenced that could remain in the Prussian blue framework, which contributes the long-term cycling stability. The K ions in the framework play the role of “pillars” to support the framework of Prussian blue and relieve the structural stress during the intercalation and de-intercalation of K ions. This work will reveal a new energy storage mechanism of Prussian blue and promote the design of high stability Prussian blue in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Norris, C.; Parmananda, M.; Roberts, S. A.; Mukherjee, P. P. Probing the influence of multiscale heterogeneity on effective properties of graphite electrodes. ACS Appl. Mater. Interfaces 2022, 14, 943–953.

    Article  CAS  Google Scholar 

  2. Ely, T. O.; Kamzabek, D.; Chakraborty, D. Batteries safety: Recent progress and current challenges. Front. Energy Res. 2019, 7, 71.

    Article  Google Scholar 

  3. Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Chen, X. R.; Huang, J. Q.; Zhang, Q. The boundary of lithium plating in graphite electrode for safe lithium-ion batteries. Angew. Chem., Int. Ed. 2021, 60, 13007–13012.

    Article  CAS  Google Scholar 

  4. Zhang, W. L.; Yin, J.; Wang, W. X.; Bayhan, Z.; Alshareef, H. N. Status of rechargeable potassium batteries. Nano Energy 2021, 83, 105792.

    Article  CAS  Google Scholar 

  5. Yao, Q. Q.; Zhu, C. B. Advanced post-potassium-ion batteries as emerging potassium-based alternatives for energy storage. Adv. Funct. Mater. 2020, 30, 2005209.

    Article  CAS  Google Scholar 

  6. Tan, H. T.; Feng, Y. Z.; Rui, X. H.; Yu, Y.; Huang, S. M. Metal chalcogenides: Paving the way for high-performance sodium/potassium-ion batteries. Small Methods 2020, 4, 1900563.

    Article  CAS  Google Scholar 

  7. Jian, Z. L.; Xing, Z. Y.; Bommier, C.; Li, Z. F.; Ji, X. L. Hard carbon microspheres: Potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 2016, 6, 1501874.

    Article  Google Scholar 

  8. Min, X.; Xiao, J.; Fang, M. H.; Wang, W.; Zhao, Y. J.; Liu, Y. G.; Abdelkader, A. M.; Xi, K.; Kumar, R. V.; Huang, Z. H. Potassium-ion batteries: Outlook on present and future technologies. Energy Environ. Sci. 2021, 14, 2186–2243.

    Article  CAS  Google Scholar 

  9. Liu, W.; Liu, P. C.; Mitlin, D. Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes. Adv. Energy Mater. 2020, 10, 2002297.

    Article  CAS  Google Scholar 

  10. Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.

    Article  CAS  Google Scholar 

  11. Li, W. J.; Han, C.; Cheng, G.; Chou, S. L.; Liu, H. K.; Dou, S. X. Chemical properties, structural properties, and energy storage applications of Prussian blue analogues. Small 2019, 15, 1900470.

    Article  Google Scholar 

  12. Zhang, C. L.; Xu, Y.; Zhou, M.; Liang, L. Y.; Dong, H. S.; Wu, M. H.; Yang, Y.; Lei, Y. Potassium prussian blue nanoparticles: A low-cost cathode material for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1604307.

    Article  Google Scholar 

  13. Zhao, S. Q.; Guo, Z. Q.; Yan, K.; Guo, X.; Wan, S. W.; He, F. R.; Sun, B.; Wang, G. X. The rise of prussian blue analogs: Challenges and opportunities for high-performance cathode materials in potassium-ion batteries. Small Struct. 2021, 2, 2000054.

    Article  CAS  Google Scholar 

  14. Bie, X. F.; Kubota, K.; Hosaka, T.; Chihara, K.; Komaba, S. A novel K-ion battery: Hexacyanoferrate(II)/graphite cell. J. Mater. Chem. A 2017, 5, 4325–4330.

    Article  CAS  Google Scholar 

  15. Zhou, A. J.; Cheng, W. J.; Wang, W.; Zhao, Q.; Xie, J.; Zhang, W. X.; Gao, H. C.; Xue, L. G.; Li, J. Z. Hexacyanoferrate-type prussian blue analogs: Principles and advances toward high-performance sodium and potassium ion batteries. Adv. Energy Mater. 2020, 11, 2000943.

    Article  Google Scholar 

  16. Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 2018, 8, 1702619.

    Article  Google Scholar 

  17. Peng, J.; Zhang, W.; Liu, Q. N.; Wang, J. Z.; Chou, S. L.; Liu, H. K.; Dou, S. X. Prussian blue analogues for sodium-ion batteries: Past, present, and future. Adv. Mater. 2022, 34, 2108384.

    Article  CAS  Google Scholar 

  18. Liu, Q. N.; Hu, Z.; Chen, M. Z.; Zou, C.; Jin, H. L.; Wang, S.; Chou, S. L.; Liu, Y.; Dou, S. X. The cathode choice for commercialization of sodium-ion batteries: Layered transition metal oxides versus Prussian blue analogs. Adv. Funct. Mater. 2020, 30, 1909530.

    Article  CAS  Google Scholar 

  19. Peng, F. W.; Yu, L.; Gao, P. Y.; Liao, X. Z.; Wen, J. G.; He, Y. S.; Tan, G. Q.; Ren, Y.; Ma, Z. F. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes. J. Mater. Chem. A 2019, 7, 22248–22256.

    Article  CAS  Google Scholar 

  20. He, G.; Nazar, L. F. Crystallite size control of Prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017, 2, 1122–1127.

    Article  CAS  Google Scholar 

  21. Li, C.; Wang, X. S.; Deng, W. J.; Liu, C. Y.; Chen, J. T.; Li, R.; Xue, M. Q. Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of Prussian white analogues. ChemElectroChem 2018, 5, 3887–3892.

    Article  CAS  Google Scholar 

  22. Xue, Q.; Li, L.; Huang, Y. X.; Huang, R. L.; Wu, F.; Chen, R. J. Polypyrrole-modified Prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl. Mater. Interfaces 2019, 11, 22339–22345.

    Article  CAS  Google Scholar 

  23. Sun, Y. P.; Liu, C. L.; Xie, J.; Zhuang, D. G.; Zheng, W. Q.; Zhao, X. B. Potassium manganese hexacyanoferrate/graphene as a highperformance cathode for potassium-ion batteries. New J. Chem. 2019, 43, 11618–11625.

    Article  CAS  Google Scholar 

  24. Wang, J. M.; Wang, B. B.; Liu, X. J.; Bai, J. T.; Wang, H.; Wang, G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem. Eng. J. 2020, 382, 123050.

    Article  CAS  Google Scholar 

  25. Liao, J. Y.; Hu, Q.; Zou, B. K.; Xiang, J. X.; Chen, C. H. The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries. Electrochim. Acta 2016, 220, 114–121.

    Article  CAS  Google Scholar 

  26. Wu, X. Y.; Wu, C. H.; Wei, C. X.; Hu, L.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Wang, J. L.; Yang, H. X. Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 5393–5399.

    Article  CAS  Google Scholar 

  27. Ma, X. H.; Wei, Y. Y.; Wu, Y. D.; Wang, J.; Jia, W.; Zhou, J. H.; Zi, Z. F.; Dai, J. M. High crystalline Na2Ni[Fe(CN)6] particles for a high-stability and low-temperature sodium-ion batteries cathode. Electrochim. Acta 2019, 297, 392–397.

    Article  CAS  Google Scholar 

  28. Qin, M. S.; Ren, W. H.; Jiang, R. X.; Li, Q.; Yao, X. H.; Wang, S. Q.; You, Y.; Mai, L. Q. Highly crystallized prussian blue with enhanced kinetics for highly efficient sodium storage. ACS Appl. Mater. Interfaces 2021, 13, 3999–4007.

    Article  CAS  Google Scholar 

  29. Chong, S. K.; Chen, Y. Z.; Zheng, Y.; Tan, Q.; Shu, C. Y.; Liu, Y. N.; Guo, Z. P. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J. Mater. Chem. A 2017, 5, 22465–22471.

    Article  CAS  Google Scholar 

  30. Ren, W. H.; Chen, X. J.; Zhao, C. Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage. Adv. Energy Mater. 2018, 8, 1801413.

    Article  Google Scholar 

  31. Sun, F. F.; Li, W. H.; Huang, Z. H.; Sun, W. P.; Dou, Y. H.; Yuan, D.; Jia, B. H.; Ma, T. Y. Pulse-potential electrochemistry to boost real-life application of pseudocapacitive dual-doped polypyrrole. SmartMat 2022, 3, 644–656.

    Article  CAS  Google Scholar 

  32. Li, X. J.; Wang, X. K.; Liu, G.; Sui, X. Y.; Wu, Q. F.; Wang, X. E.; Lv, X. L.; Xie, E. Q.; Zhang, Z. X. 2.5 V “water in salt” aqueous micro-supercapacitors based on polypyrrole-coated NiCo layered double hydroxides. Chem. Eng. J. 2023, 452, 139140.

    Article  CAS  Google Scholar 

  33. Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544–6546.

    Article  CAS  Google Scholar 

  34. He, B.; Man, P.; Zhang, Q. C.; Wang, C.; Zhou, Z. Y.; Li, C. W.; Wei, L.; Yao, Y. G. Conversion synthesis of self-standing potassium zinc hexacyanoferrate arrays as cathodes for high-voltage flexible aqueous rechargeable sodium-ion batteries. Small 2019, 15, 1905115.

    Article  CAS  Google Scholar 

  35. Huang, H. J.; Xia, X.; Yun, J. W.; Huang, C.; Li, D. L.; Chen, B. B.; Yang, Z. H.; Zhang, W. X. Interfacial engineering of hydrated vanadate to promote the fast and highly reversible H+/Zn2+ co-insertion processes for high-performance aqueous rechargeable batteries. Energy Storage Mater. 2022, 52, 473–484.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22109060, 52071171, and 52202248), the 2021 Annual Scientific Research Funding Project of the Educational Department of Liaoning Province (No. LJKZ0101), Liaoning BaiQianWan Talents Program (No. LNBQW2018B0048), Shenyang Science and Technology Project (No. 21-108-9-04), Young Scientific and Technological Talents Project of the Department of Education of Liaoning Province (No. LQN202008), Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology (No. CHV22-05), Australian Research Council (ARC) through Future Fellowship (Nos. FT210100298 and FT210100806), Discovery Project (No. DP220100603), Linkage Project (No. LP210100467, LP210200504, and LP210200345), and Industrial Transformation Training Centre (No. IC180100005) schemes, CSIRO Energy Centre and Kick-Start Project. The Study Melbourne Research Partnerships program has been made possible by funding from the Victorian Government through Study Melbourne.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Sun or Qin Zhao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Tian, X., Sun, Y. et al. Pillar effect boosting the electrochemical stability of Prussian blue-polypyrrole for potassium ion batteries. Nano Res. 16, 6326–6333 (2023). https://doi.org/10.1007/s12274-023-5692-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5692-0

Keywords

Navigation