Skip to main content
Log in

Insights into spin polarization regulated exciton dissociation and charge separation of C3N4 for efficient hydrogen evolution and simultaneous benzylamine oxidation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The employment of spin polarization under an external magnetic field holds great potential for the improvements of photocatalytic performance. However, owing to the huge difference in dielectric properties between ferromagnetic oxide and polymers, the photogenerated excitons with spin states are often limited to the ferromagnetic oxide wells, which leads to unsatisfactory activity. In this paper, a single-atom Co-doped C3N4 photocatalyst is successfully synthesized for photocatalytic water splitting and simultaneous oxidation of benzylamine. Under a tiny external magnetic field (24.5 mT), the hydrogen production rate could reach at 3979.0 µmol·g−1·h−1, which is about 340 times that of C3N4. Experimental results and theoretical calculations indicate that the interaction of Co d and N p orbital changes the symmetry center of C3N4, resulting in an increase in dielectric constant and spin polarization. Moreover, magnetic fields further promote parallel electron spin, and the increased number of charges with the parallel spin-down state is likely to dissociate under the action of an external magnetic field. On the other hand, the Co-N bond provides a huge built-in electric field and active site for strengthening the charge transfer and surface reaction. This work not only deepens the understanding of spin polarization, but also enriches methods to accelerate electron-hole separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, Z. Y.; Li, J. L.; Zheng, Z. Q.; Li, L. H.; Yu, L. L.; Wang, C. X.; Yang, G. W. A floating sheet for efficient photocatalytic water splitting. Adv. Energy Mater. 2016, 6, 1600510.

    Google Scholar 

  2. Nguyen, H. L. Metal-organic frameworks can photocatalytically split water—why not. Adv. Mater. 2022, 34, 2200465.

    CAS  Google Scholar 

  3. Hu, W.; Lin, L.; Zhang, R. Q.; Yang, C.; Yang, J. L. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J. Am. Chem. Soc. 2017, 139, 15429–15436.

    CAS  Google Scholar 

  4. Liu, H.; Xu, C. Y.; Li, D. D.; Jiang, H. L. Photocatalytic hydrogen production coupled with selective benzylamine oxidation over MOF composites. Angew. Chem., Int. Ed. 2018, 57, 5379–5383.

    CAS  Google Scholar 

  5. Ding, Y.; Miao, B. Q.; Li, S. N.; Jiang, Y. C.; Liu, Y. Y.; Yao, H. C.; Chen, Y. Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Appl. Catal. B:Environ. 2020, 268, 118393.

    CAS  Google Scholar 

  6. She, P.; Qin, J. S.; Sheng, J. Y.; Qi, Y. Y.; Rui, H. B.; Zhang, W.; Ge, X.; Lu, G. Y.; Song, X. W.; Rao, H. Dual-functional photocatalysis for cooperative hydrogen evolution and benzylamine oxidation coupling over sandwiched-like Pd@TiO2@ZnIn2S4 nanobox. Small 2022, 18, 2105114.

    CAS  Google Scholar 

  7. Zhang, F. L.; Li, X.; Dong, X. Y.; Hao, H. M.; Lang, X. J. Thiazolo[5, 4-d]thiazole-based covalent organic framework microspheres for blue light photocatalytic selective oxidation of amines with O2. Chin. J. Catal. 2022, 43, 2395–2404.

    CAS  Google Scholar 

  8. Chen, P.; Liu, F.; Ding, H. Z.; Chen, S.; Chen, L.; Li, Y. J.; Au, C. T.; Yin, S. F. Porous double-shell CdS@C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity. Appl. Catal. B:Environ. 2019, 252, 33–40.

    CAS  Google Scholar 

  9. Zhang, J. F.; Wageh, S.; Al-Ghamdi, A.; Yu, J. G. New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS. Appl. Catal. B:Environ. 2016, 192, 101–107.

    CAS  Google Scholar 

  10. Gopannagari, M.; Kumar, D. P.; Park, H.; Kim, E. H.; Bhavani, P.; Reddy, D. A.; Kim, T. K. Influence of surface-functionalized multi-walled carbon nanotubes on CdS nanohybrids for effective photocatalytic hydrogen production. Appl. Catal. B:Environ. 2018, 236, 294–303.

    CAS  Google Scholar 

  11. Lu, Y.; Yin, W. J.; Peng, K. L.; Wang, K.; Hu, Q.; Selloni, A.; Chen, F. R.; Liu, L. M.; Sui, M. L. Self-hydrogenated shell promoting photocatalytic H2 evolution on anatase TiO2. Nat. Commun. 2018, 9, 2752.

    Google Scholar 

  12. Zhang, L.; Ng, T. C. A.; Liu, X. M.; Gu, Q. L.; Pang, Y. J.; Zhang, Z. X.; Lyu, Z. Y.; He, Z. M.; Ng, H. Y.; Wang, J. Hydrogenated TiO2 membrane with photocatalytically enhanced anti-fouling for ultrafiltration of surface water. Appl. Catal. B:Environ. 2020, 264, 118528.

    Google Scholar 

  13. Zhou, X. M.; Liu, N.; Schmuki, P. Photocatalysis with TiO2 nanotubes: “Colfrful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal. 2017, 7, 3210–3235.

    CAS  Google Scholar 

  14. Shi, X. W.; Dai, C.; Wang, X.; Hu, J. Y.; Zhang, J. Y.; Zheng, L. X.; Mao, L.; Zheng, H. J.; Zhu, M. S. Protruding Pt single-sites on hexagonal ZnIn2S4 to accelerate photocatalytic hydrogen evolution. Nat. Commun. 2022, 13, 1287.

    CAS  Google Scholar 

  15. Wang, S. B.; Guan, B. Y.; Wang, X.; Lou, X. W. D. Formation of hierarchical Co9S8@ZnIn2S4 heterostructured cages as an efficient photocatalyst for hydrogen evolution. J. Am. Chem. Soc. 2018, 140, 15145–15148.

    CAS  Google Scholar 

  16. Yang, W. L.; Zhang, L.; Xie, J. F.; Zhang, X. D.; Liu, Q. H.; Yao, T.; Wei, S. Q.; Zhang, Q.; Xie, Y. Enhanced photoexcited carrier separation in oxygen-doped ZnIn2S4 nanosheets for hydrogen evolution. Angew. Chem., Int. Ed. 2016, 55, 6716–6720.

    CAS  Google Scholar 

  17. Kong, L. Q.; Ji, Y. J.; Dang, Z. Z.; Yan, J. Q.; Li, P.; Li, Y. Y.; Liu, S. Z. g-C3N4 loading black phosphorus quantum dot for efficient and stable photocatalytic H2 generation under visible light. Adv. Funct. Mater. 2018, 28, 1800668.

    Google Scholar 

  18. Ran, J. R.; Guo, W. W.; Wang, H. L.; Zhu, B. C.; Yu, J. G.; Qiao, S. Z. Metal-free 2D/2D phosphorene/g-C3N4 van der waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128.

    Google Scholar 

  19. Han, Q.; Wang, B.; Zhao, Y.; Hu, C. G.; Qu, L. T. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution. Angew. Chem., Int. Ed. 2015, 54, 11433–11437.

    CAS  Google Scholar 

  20. Chen, P.; Meng, L. H.; Chen, L.; Guo, J. K.; Shen, S.; Au, C. T.; Yin, S. F. Double-shell and flower-like ZnS-C3N4 derived from in situ supramolecular self-assembly for selective aerobic oxidation of amines to imines. ACS Sustainable Chem. Eng. 2019, 7, 14203–14209.

    CAS  Google Scholar 

  21. Yu, F. T.; Wang, Z. Q.; Zhang, S. C.; Ye, H. N.; Kong, K. Y.; Gong, X. Q.; Hua, J. L.; Tian, H. Molecular engineering of donor-acceptor conjugated polymer/g-C3N4 heterostructures for significantly enhanced hydrogen evolution under visible-light irradiation. Adv. Funct. Mater. 2018, 28, 1804512.

    Google Scholar 

  22. Han, Y. Y.; Lu, X. L.; Tang, S. F.; Yin, X. P.; Wei, Z. W.; Lu, T. B. Metal-free 2D/2D heterojunction of graphitic carbon nitride/graphdiyne for improving the hole mobility of graphitic carbon nitride. Adv. Energy Mater. 2018, 8, 1702992.

    Google Scholar 

  23. Zou, Y. D.; Yang, B. B.; Liu, Y.; Ren, Y.; Ma, J. H.; Zhou, X. R.; Cheng, X. W.; Deng, Y. H. Controllable interface-induced Co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv. Funct. Mater. 2018, 28, 1806214.

    Google Scholar 

  24. Hou, Y.; Zuo, F.; Dagg, A. P.; Liu, J. K.; Feng, P. Y. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv. Mater. 2014, 26, 5043–5049.

    CAS  Google Scholar 

  25. Li, Y.; Liu, X. M.; Tan, L.; Cui, Z. D.; Jing, D. D.; Yang, X. J.; Liang, Y. Q.; Li, Z. Y.; Zhu, S. L.; Zheng, Y. F. et al. Eradicating multidrug-resistant bacteria rapidly using a multi functional g-C3N4@Bi2S3 nanorod heterojunction with or without antibiotics. Adv. Funct. Mater. 2019, 29, 1900946.

    Google Scholar 

  26. Li, K. X.; Zeng, Z. X.; Yan, L. S.; Luo, S. L.; Luo, X. B.; Huo, M. X.; Guo, Y. H. Fabrication of platinum-deposited carbon nitride nanotubes by a one-step solvothermal treatment strategy and their efficient visible-light photocatalytic activity. Appl. Catal. B:Environ. 2015, 165, 428–437.

    CAS  Google Scholar 

  27. Zada, A.; Humayun, M.; Raziq, F.; Zhang, X. L.; Qu, Y.; Bai, L. L.; Qin, C. L.; Jing, L. Q.; Fu, H. G. Exceptional visible-light-driven cocatalyst-free photocatalytic activity of g-C3N4 by well designed nanocomposites with plasmonic Au and SnO2. Adv. Energy Mater. 2016, 6, 1601190.

    Google Scholar 

  28. Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem., Int. Ed. 2014, 53, 9240–9245.

    CAS  Google Scholar 

  29. Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

    CAS  Google Scholar 

  30. Wang, H. H.; Lin, Q. Y.; Yin, L. T.; Yang, Y. L.; Qiu, Y.; Lu, C. H.; Yang, H. H. Biomimetic design of hollow flower-like g-C3N4@PDA organic framework nanospheres for realizing an efficient photoreactivity. Small 2019, 15, 1900011.

    Google Scholar 

  31. Zhang, Y.; Wu, L. L.; Zhao, X. Y.; Zhao, Y. N.; Tan, H. Q.; Zhao, X.; Ma, Y. Y.; Zhao, Z.; Song, S. Y.; Wang, Y. H. et al. Leaf-mosaic-inspired vine-like graphitic carbon nitride showing high light absorption and efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801139.

    Google Scholar 

  32. Pan, L.; Ai, M. H.; Huang, C. Y.; Yin, L.; Liu, X.; Zhang, R. R.; Wang, S. B.; Jiang, Z.; Zhang, X. W.; Zou, J. J. et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418.

    CAS  Google Scholar 

  33. Li, Y. Y.; Wang, Z. H.; Wang, Y. Q.; Kovács, A.; Foo, C.; Dunin-Borkowski, R. E.; Lu, Y. H.; Taylor, R. A.; Wu, C.; Tsang, S. C. E. Local magnetic spin mismatch promoting photocatalytic overall water splitting with exceptional solar-to-hydrogen efficiency. Energy Environ. Sci. 2022, 15, 265–277.

    CAS  Google Scholar 

  34. Kafle, T. R.; Kattel, B.; Lane, S. D.; Wang, T.; Zhao, H.; Chan, W. L. Charge transfer exciton and spin flipping at organic-transition-metal dichalcogenide interfaces. ACS Nano 2017, 11, 10184–10192.

    CAS  Google Scholar 

  35. Chen, X. H.; Lu, H. P.; Wang, K.; Zhai, Y. X.; Lunin, V.; Sercel, P. C.; Beard, M. C. Tuning spin-polarized lifetime in two-dimensional metal-halide perovskite through exciton binding energy. J. Am. Chem. Soc. 2021, 143, 19438–19445.

    CAS  Google Scholar 

  36. Moore, G. W. K.; Howell, S. E. L.; Brady, M.; Xu, X.; McNeil, K. Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice. Nat. Commun. 2021, 12, 1.

    CAS  Google Scholar 

  37. Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

    CAS  Google Scholar 

  38. Sahu, R. S.; Shih, Y. H. Reductive debromination of tetrabromobisphenol A by tailored carbon nitride Fe/Cu nanocomposites under an oxic condition. Chem. Eng. J. 2019, 378, 122059.

    CAS  Google Scholar 

  39. Li, Z. S.; Yang, S. Y.; Zhou, J. M.; Li, D. H.; Zhou, X. F.; Ge, C. Y.; Fang, Y. P. Novel mesoporous g-C3N4 and BiPO4 nanorods hybrid architectures and their enhanced visible-light-driven photocatalytic performances. Chem. Eng. J. 2014, 241, 344–351.

    CAS  Google Scholar 

  40. Xu, H.; Yan, J.; Xu, Y. G.; Song, Y. H.; Li, H. M.; Xia, J. X.; Huang, C. J.; Wan, H. L. Novel visible-light-driven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B:Environ. 2013, 129, 182–193.

    CAS  Google Scholar 

  41. Zhao, K.; Li, H. T.; Tian, S. Q.; Yang, W. J.; Wang, X. X.; Pang, A. M.; Xie, C. S.; Zeng, D. W. A facile low-temperature synthesis of hierarchical porous Co3O4 micro/nano structures derived from ZIF-67 assisted by ammonium perchlorate. Inorg. Chem. Front. 2019, 6, 715–722.

    CAS  Google Scholar 

  42. Li, G.; Deng, X. X.; Chen, P.; Wang, X. D.; Ma, J.; Liu, F.; Yin, S. F. Sulphur vacancies-VS2@C3N4 drived by in situ supramolecular self-assembly for synergistic photocatalytic degradation of real wastewater and H2 production: Vacancies taming interfacial compact heterojunction and carriers transfer. Chem. Eng. J. 2022, 433, 134505.

    CAS  Google Scholar 

  43. Chen, P.; Li, Y. Z.; Xiao, C. X.; Chen, L.; Guo, J. K.; Shen, S.; Au, C. T.; Yin, S. F. Preparation of helical BiVO4/Ag/C3N4 for selective oxidation of C-H bond under visible light irradiation. ACS Sustainable Chem. Eng. 2019, 7, 17500–17506.

    CAS  Google Scholar 

  44. Song, Q. Q.; Li, J. Q.; Wang, L.; Pang, L. Y.; Liu, H. Controlling the chemical bonding of highly dispersed Co atoms anchored on an ultrathin g-C3N4@carbon sphere for enhanced electrocatalytic activity of the oxygen evolution reaction. Inorg. Chem. 2019, 58, 10802–10811.

    CAS  Google Scholar 

  45. Wang, K. Y.; Gu, G. Z.; Hu, S. Z.; Zhang, J.; Sun, X. L.; Wang, F.; Li, P.; Zhao, Y. F.; Fan, Z. P.; Zou, X. Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N2 fixation: Experiment and DFT simulation analysis. Chem. Eng. J. 2019, 368, 896–904.

    CAS  Google Scholar 

  46. Gong, Y. N.; Shao, B. Z.; Mei, J. H.; Yang, W.; Zhong, D. C.; Lu, T. B. Facile synthesis of C3N4-supported metal catalysts for efficient CO2 photoreduction. Nano Res. 2022, 15, 551–556.

    CAS  Google Scholar 

  47. Li, P. X.; Yan, X. Y.; Gao, S. Y.; Cao, R. Boosting photocatalytic hydrogen production coupled with benzyl alcohol oxidation over CdS/metal-organic framework composites. Chem. Eng. J. 2021, 421, 129870.

    CAS  Google Scholar 

  48. Jonker, B. T.; Kioseoglou, G.; Hanbicki, A. T.; Li, C. H.; Thompson, P. E. Electrical spin-njection into silicon from a ferromagnetic metal/tunnel barrier contact. Nat. Phys. 2007, 5, 542–546.

    Google Scholar 

  49. Jin, C.; Li, P.; Mi, W. B.; Bai, H. L. Structure, magnetic, and transport properties of epitaxial ZnFe2O4 films: An experimental and first-principles study. J. Appl. Phys. 2014, 115, 213908.

    Google Scholar 

  50. Wang, H.; Jin, S.; Zhang, X. D.; Xie, Y. Excitonic effects in polymeric photocatalysts. Angew. Chem., Int. Ed. 2020, 59, 22828–22839.

    CAS  Google Scholar 

  51. Wang, H.; Sun, X. S.; Li, D. D.; Zhang, X. D.; Chen, S. C.; Shao, W.; Tian, Y. P.; Xie, Y. Boosting hot-electron generation: Exciton dissociation at the order-disorder interfaces in polymeric photocatalysts. J. Am. Chem. Soc. 2017, 139, 2468–2473.

    CAS  Google Scholar 

  52. Hsiao, Y. C.; Wu, T.; Li, M. X.; Hu, B. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv. Mater. 2015, 27, 2899–2906.

    CAS  Google Scholar 

  53. Zhu, C.; Fang, Q. L.; Liu, R. L.; Dong, W.; Song, S.; Shen, Y. Insights into the crucial role of electron and spin structures in heteroatom-doped covalent triazine frameworks for removing organic micropollutants. Environ. Sci. Technol. 2022, 56, 6699–6709.

    CAS  Google Scholar 

  54. Yang, S. L.; Deng, X. X.; Chen, P.; Zhao, T. X.; Liu, F.; Deng, C. Y.; Yin, S. F. Linker functionalized poly(heptazine imide) as charge channel and activation site for enhancing photocatalytic nitrogen fixation in pure water. Appl. Catal. B:Environ. 2022, 311, 121370.

    CAS  Google Scholar 

  55. Chen, J. L.; Wang, H.; Zhang, Z. Q.; Han, L. F.; Zhang, Y. H.; Gong, F. L.; Xie, K. F.; Xu, L. C.; Song, W.; Wu, S. D. Ultrathin HNb3O8 nanosheets with oxygen vacancies for enhanced photocatalytic oxidation of amines under visible light irradiation. J. Mater. Chem. A 2019, 7, 5493–5503.

    CAS  Google Scholar 

  56. Wang, T.; Tao, X. Q.; Li, X. L.; Zhang, K.; Liu, S. J.; Li, B. X. Synergistic Pd single atoms, clusters, and oxygen vacancies on TiO2 for photocatalytic hydrogen evolution coupled with selective organic oxidation. Small 2021, 17, 2006255.

    CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Guizhou Provincial Science and Technology Foundation (No. ZK2021069), the National Natural Science Foundation of China (No. 22268015), the Young Science and Technology Talents Development Project of Education Department in Guizhou Province (No. KY2022144), and the Innovation Group Project of Education Department in Guizhou Province (NO. 2021010). The authors would like to thank Shiyanjia Lab (https://www.shiyanjia.com) for materials characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen, Fei Liu or Shuang-Feng Yin.

Electronic Supplementary Material

12274_2023_5574_MOESM1_ESM.pdf

Insights into spin polarization regulated exciton dissociation and charge separation of C3N4 for efficient hydrogen evolution and simultaneous benzylamine oxidation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Sun, X., Chen, P. et al. Insights into spin polarization regulated exciton dissociation and charge separation of C3N4 for efficient hydrogen evolution and simultaneous benzylamine oxidation. Nano Res. 16, 8845–8852 (2023). https://doi.org/10.1007/s12274-023-5574-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5574-5

Keywords

Navigation