Skip to main content
Log in

Growing curly graphene layer boosts hard carbon with superior sodium-ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Benefiting from the distinctive ordering degree and local microstructure characteristics, hard carbon (HC) is considered as the most promising anode for sodium-ion batteries (SIBs). Unfortunately, the low initial Coulombic efficiency (ICE) and limited reversible capacity severely impede its extensive application. Here, a homogeneous curly graphene (CG) layer with a micropore structure on HC is designed and executed by a simple chemical vapor deposition method (without catalysts). CG not only improves the electronic/ionic conductivity of the hard carbon but also effectively shields its surface defects, enhancing its ICE. In particular, due to the spontaneous curling structural characteristics of CG sheets (CGs), the micropores (≤ 2 nm) formed provide additional active sites, increasing its capacity. When used as a sodium-ion battery anode, the HC-CG composite anode displayed an outstanding reversible capacity of 358 mAh·g−1, superior ICE of 88.6%, remarkable rate performance of 145.8 mAh·g−1 at 5 A·g−1, and long cycling life after 1000 cycles with 88.6% at 1 A·g−1. This work provides a simple defect/microstructure turning strategy for hard carbon anodes and deepens the understanding of Na+ storage behavior in the plateau region, especially on the pore-filling mechanism by forming quasi-metallic clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, M. Q.; Wu, F.; Bai, Y.; Li, Y.; Ren, H. X.; Zhao, R.; Feng, X.; Song, T. L.; Wu, C. Boosting sodium storage performance of hard carbon anodes by pore architecture engineering. ACS Appl. Mater. Interfaces 2021, 13, 47671–47683.

    CAS  Google Scholar 

  2. Yan, D.; Yu, C. Y.; Zhang, X. J.; Qin, W.; Lu, T.; Hu, B. W.; Li, H. L.; Pan, L. K. Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery. Electrochim. Acta 2016, 191, 385–391.

    CAS  Google Scholar 

  3. Yin, H.; Han, C. J.; Liu, Q. R.; Wu, F. Y.; Zhang, F.; Tang, Y. B. Recent advances and perspectives on the polymer electrolytes for sodium/potassium-ion batteries. Small 2021, 17, 2006627.

    CAS  Google Scholar 

  4. Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

    Google Scholar 

  5. He, H. N.; Sun, D.; Tang, Y. G.; Wang, H. Y.; Shao, M. H. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019, 23, 233–251.

    Google Scholar 

  6. Xie, F.; Xu, Z.; Jensen, A. C. S.; Au, H.; Lu, Y. X.; Araullo-Peters, V.; Drew, A. J.; Hu, Y. S.; Titirici, M. M. Hard—soft carbon composite anodes with synergistic sodium storage performance. Adv. Funct. Mater. 2019, 29, 1901072.

    Google Scholar 

  7. Zhu, Y. Y.; Wang, Y. H.; Wang, Y. T.; Xu, T. J.; Chang, P. Research progress on carbon materials as negative electrodes in sodium- and potassium-ion batteries. Carbon Energy 2022, 4, 1182–1213.

    CAS  Google Scholar 

  8. Han, W. W.; Zhou, Y.; Zhu, T.; Chu, H. Q. Combustion synthesis of defect-rich carbon nanotubes as anodes for sodium-ion batteries. Appl. Surf. Sci. 2020, 520, 146317.

    CAS  Google Scholar 

  9. Yu, C. X.; Li, Y.; Ren, H. X.; Qian, J.; Wang, S.; Feng, X.; Liu, M. Q.; Bai, Y.; Wu, C. Engineering homotype heterojunctions in hard carbon to induce stable solid electrolyte interfaces for sodium-ion batteries. Carbon Energy 2023, 5, e220.

    CAS  Google Scholar 

  10. Lotfabad, E. M.; Kalisvaart, P.; Kohandehghan, A.; Karpuzov, D.; Mitlin, D. Origin of non-SEI related coulombic efficiency loss in carbons tested against Na and Li. J. Mater. Chem. A 2014, 2, 19685–19695.

    Google Scholar 

  11. Yang, J. Q.; Zhou, X. L.; Wu, D. H.; Zhao, X. D.; Zhou, Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries. Adv. Mater. 2017, 29, 1604108.

    Google Scholar 

  12. Hu, L. F.; Cheng, G.; Ren, J. R.; Wang, F. M.; Ren, J. G. Conformal carbon coating on hard carbon anode derived from propionaldehyde for exellent performance of lithium-ion batteries. Int. J. Electrochem. Sci. 2019, 14, 2804–2814.

    CAS  Google Scholar 

  13. Zhang, W. G.; Zeng, F. H.; Huang, H. J.; Yu, Y.; Xu, M. Q.; Xing, L. D.; Li, W. S. Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive. Nano Res., in press, https://doi.org/10.1007/s12274-022-4583-0.

  14. Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

    CAS  Google Scholar 

  15. Deng, W. T.; Cao, Y. J.; Yuan, G. M.; Liu, G. G.; Zhang, X.; Xia, Y. Y. Realizing improved sodium-ion storage by introducing carbonyl groups and closed micropores into a biomass-derived hard carbon anode. ACS Appl. Mater. Interfaces 2021, 13, 47728–47739.

    CAS  Google Scholar 

  16. Wang, P. Z.; Qiao, B.; Du, Y. C.; Li, Y. F.; Zhou, X. S.; Dai, Z. H.; Bao, J. C. Fluorine-doped carbon particles derived from lotus petioles as high-performance anode materials for sodium-ion batteries. J. Phys. Chem. C 2015, 119, 21336–21344.

    CAS  Google Scholar 

  17. Yuan, X. R.; Chen, S. M.; Li, J. L.; Xie, J. P.; Yan, G. H.; Liu, B. T.; Li, X. B.; Li, R.; Pan, L. K.; Mai, W. J. Unders tanding the improved performance of sulfur-doped interconnected carbon microspheres for Na-ion storage. Carbon Energy 2021, 3, 615–626.

    CAS  Google Scholar 

  18. Chen, F. P.; Di, Y. J.; Su, Q.; Xu, D. M.; Zhang, Y. P.; Zhou, S.; Liang, S. Q.; Cao, X. X.; Pan, A. Q. Vanadium-modified hard carbon spheres with sufficient pseudographitic domains as high-performance anode for sodium-ion batteries. Carbon Energy, in press, https://doi.org/10.1002/cey2.191.

  19. Gan, Q. M.; Qin, N.; Gu, S.; Wang, Z. Y.; Li, Z. Q.; Liao, K. M.; Zhang, K. L.; Lu, L.; Xu, Z. H.; Lu, Z. G. Extra sodiation sites in hard carbon for high performance sodium ion batteries. Small Methods 2021, 5, 2100580.

    CAS  Google Scholar 

  20. Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

    Google Scholar 

  21. He, X. X.; Zhao, J. H.; Lai, W. H.; Li, R. R.; Yang, Z.; Xu, C. M.; Dai, Y. Y.; Gao, Y.; Liu, X. H.; Li, L. et al. Soft-carbon-coated, freestanding, low-defect, hard-carbon anode to achieve a 94% initial Coulombic efficiency for sodium-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 44358–44368.

    CAS  Google Scholar 

  22. Zhu, Z. Y.; Zhong, W. T.; Zhang, Y. J.; Dong, P.; Sun, S. G.; Zhang, Y. J.; Li, X. Elucidating electrochemical intercalation mechanisms of biomass-derived hard carbon in sodium-/potassium-ion batteries. Carbon Energy 2021, 3, 541–553.

    CAS  Google Scholar 

  23. Qi, Y. R.; Lu, Y. X.; Liu, L. L.; Qi, X. G.; Ding, F. X.; Li, H.; Huang, X. J.; Chen, L. Q.; Hu, Y. S. Retarding graphitization of soft carbon precursor: From fusion-state to solid-state carbonization. Energy Storage Mater. 2020, 26, 577–584.

    Google Scholar 

  24. Lu, H. Y.; Chen, X. Y.; Jia, Y. L.; Chen, H.; Wang, Y. X.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Engineering Al2O3 atomic layer deposition: Enhanced hard carbon-electrolyte interface towards practical sodium ion batteries. Nano Energy 2019, 64, 103903.

    CAS  Google Scholar 

  25. Bo, Z.; Mao, S.; Han, Z. J.; Cen, K. F.; Chen, J. H.; Ostrikov, K. Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 2015, 44, 2108–2121.

    CAS  Google Scholar 

  26. Bo, Z.; Yang, Y.; Chen, J. H.; Yu, K. H.; Yan, J. H.; Cen, K. F. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphenenanosheets. Nanoscale 2013, 5, 5180–5204.

    CAS  Google Scholar 

  27. Mu, Y. B.; Han, M. S.; Li, J. Y.; Liang, J. B.; Yu, J. Growing vertical graphene sheets on natural graphite for fast charging lithiumion batteries. Carbon 2021, 173, 477–484.

    CAS  Google Scholar 

  28. Han, M. S.; Mu, Y. B.; Yuan, F.; Liang, J. B.; Jiang, T.; Bai, X. D.; Yu, J. Vertical graphene growth on uniformly dispersed sub-nanoscale SiOx/N-doped carbon composite microspheres with a 3D conductive network and an ultra-low volume deformation for fast and stable lithium-ion storage. J. Mater. Chem. A 2020, 8, 3822–3833.

    CAS  Google Scholar 

  29. Han, M.; Lin, Z.; Ji, X.; Mu, Y.; Li, J.; Yu, J. Growth of flexible and porous surface layers of vertical graphene sheets for accommodating huge volume change of silicon in lithium-ion battery anodes. Mater. Today Energy 2020, 17, 100445.

    Google Scholar 

  30. Liu, X. F.; Wang, D.; Zhang, B. S.; Luan, C.; Qin, T. T.; Zhang, W.; Wang, D.; Shi, X. Y.; Deng, T.; Zheng, W. T. Vertical graphene nanowalls coating of copper current collector for enhancing rate performance of graphite anode of Li ion battery: The merit of optimized interface architecture. Electrochim. Acta 2018, 268, 234–240.

    CAS  Google Scholar 

  31. Han, M. S.; Yu, J. Subnanoscopically and homogeneously dispersed SiOx/C composite spheres for high-performance lithium ion battery anodes. J. Power Sources 2019, 414, 435–443.

    CAS  Google Scholar 

  32. Norton, T. S.; Dryer, F. L. Toward a comprehensive mechanism for methanol pyrolysis. Int. J. Chem. Kinet. 1990, 22, 219–241.

    CAS  Google Scholar 

  33. Ye, F.; Song, Q.; Zhang, Z. C.; Li, W.; Zhang, S. Y.; Yin, X. W.; Zhou, Y. Z.; Tao, H. W.; Liu, Y. S.; Cheng, L. F. et al. Direct growth of edge-rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband high-performance microwave absorption. Adv. Funct. Mater. 2018, 28, 1707205.

    Google Scholar 

  34. Zhao, J.; Shaygan, M.; Eckert, J.; Meyyappan, M.; Rümmeli, M. H. A growth mechanism for free-standing vertical graphene. Nano Lett. 2014, 14, 3064–3071.

    CAS  Google Scholar 

  35. Zhu, M. Y.; Wang, J. J.; Holloway, B. C.; Outlaw, R. A.; Zhao, X.; Hou, K.; Shutthanandan, V.; Manos, D. M. A mechanism for carbon nanosheet formation. Carbon 2007, 45, 2229–2234.

    CAS  Google Scholar 

  36. Davami, K.; Shaygan, M.; Kheirabi, N.; Zhao, J.; Kovalenko, D. A.; Rümmeli, M. H.; Opitz, J.; Cuniberti, G.; Lee, J. S.; Meyyappan, M. Synthesis and characterization of carbon nanowalls on different substrates by radio frequency plasma enhanced chemical vapor deposition. Carbon 2014, 72, 372–380.

    CAS  Google Scholar 

  37. Li, Q.; Liu, X. S.; Tao, Y.; Huang, J. X.; Zhang, J.; Yang, C. P.; Zhang, Y. B.; Zhang, S. W.; Jia, Y. R.; Lin, Q. W. et al. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries. Natl. Sci. Rev. 2022, 9, nwac084.

    CAS  Google Scholar 

  38. Sevilla, M.; Parra, J. B.; Fuertes, A. B. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. ACS Appl. Mater. Interfaces 2013, 5, 6360–6368.

    CAS  Google Scholar 

  39. Xie, F.; Niu, Y. S.; Zhang, Q. Q.; Guo, Z. Y.; Hu, Z. L.; Zhou, Q.; Xu, Z.; Li, Y. Q.; Yan, R. T.; Lu, Y. Q. et al. Screening heteroatom configurations for reversible sloping capacity promises high-power Na-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202116394.

    CAS  Google Scholar 

  40. Li, Y. Q.; Lu, Y. X.; Meng, Q. S.; Jensen, A. C. S.; Zhang, Q. Q.; Zhang, Q. H.; Tong, Y. X.; Qi, Y. R.; Gu, L.; Titirici, M. M. et al. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance. Adv. Energy Mater. 2019, 9, 1902852.

    CAS  Google Scholar 

  41. Herdman, J. D.; Connelly, B. C.; Smooke, M. D.; Long, M. B.; Miller, J. H. A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames. Carbon 2011, 49, 5298–5311.

    CAS  Google Scholar 

  42. Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742.

    CAS  Google Scholar 

  43. Alvin, S.; Yoon, D.; Chandra, C.; Cahyadi, H. S.; Park, J. H.; Chang, W.; Chung, K. Y.; Kim, J. Revealing sodium ion storage mechanism in hard carbon. Carbon 2019, 145, 67–81.

    CAS  Google Scholar 

  44. Ma, Z.; Zhuang, Y. C.; Deng, Y. M.; Song, X. N.; Zuo, X. X.; Xiao, X.; Nan, J. M. From spent graphite to amorphous sp2 + sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries. J. Power Sources 2018, 376, 91–99.

    CAS  Google Scholar 

  45. Zeng, J.; Ji, X. X.; Ma, Y. H.; Zhang, Z. X.; Wang, S. G.; Ren, Z. H.; Zhi, C. Y.; Yu, J. 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 2018, 30, 1705380.

    Google Scholar 

  46. Steinhauer, M.; Risse, S.; Wagner, N.; Friedrich, K. A. Investigation of the solid electrolyte interphase formation at graphite anodes in lithium-ion batteries with electrochemical impedance spectroscopy. Electrochim. Acta 2017, 228, 652–658.

    CAS  Google Scholar 

  47. Zhang, S. S.; Xu, K.; Jow, T. R. EIS study on the formation of solid electrolyte interface in Li-ion battery. Electrochim. Acta 2006, 51, 1636–1640.

    CAS  Google Scholar 

  48. Zhao, B.; Liu, Q. Q.; Chen, Y. J.; Liu, Q.; Yu, Q.; Wu, H. B. Interface-induced pseudocapacitance in nonporous heterogeneous particles for high volumetric sodium storage. Adv. Funct. Mater. 2020, 30, 2002019.

    CAS  Google Scholar 

  49. Qi, Y. R.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Li, H.; Huang, X. J.; Chen, L. Q.; Hu, Y. S. Slope-dominated carbon anode with high specific capacity and superior rate capability for high safety Na-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 4361–4365.

    CAS  Google Scholar 

  50. Bommier, C.; Surta, T. W.; Dolgos, M.; Ji, X. L. New mechanistic insights on Na-ion storage in nongraphitizable carbon. Nano Lett. 2015, 15, 5888–5892.

    CAS  Google Scholar 

  51. Meng, Q. S.; Lu, Y. X.; Ding, F. X.; Zhang, Q. Q.; Chen, L. Q.; Hu, Y. S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity. ACS Energy Lett. 2019, 4, 2608–2612.

    CAS  Google Scholar 

  52. Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

    Google Scholar 

  53. Youn, Y.; Gao, B.; Kamiyama, A.; Kubota, K.; Komaba, S.; Tateyama, Y. Nanometer-size Na cluster formation in micropore of hard carbon as origin of higher-capacity Na-ion battery. npj Comput. Mater. 2021, 7, 48.

    CAS  Google Scholar 

  54. Wang, Z. H.; Feng, X.; Bai, Y.; Yang, H. Y.; Dong, R. Q.; Wang, X. R.; Xu, H. J.; Wang, Q. Y.; Li, H.; Gao, H. C. et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2003854.

    CAS  Google Scholar 

  55. Li, Y. M.; Hu, Y. S.; Titirici, M. M.; Chen, L. Q.; Huang, X. J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1600659.

    Google Scholar 

  56. Lin, X. Y.; Du, X. Q.; Tsui, P. S.; Huang, J. Q.; Tan, H.; Zhang, B. Exploring room- and low-temperature performance of hard carbon material in half and full Na-ion batteries. Electrochim. Acta 2019, 316, 60–68.

    CAS  Google Scholar 

  57. Bin, D. S.; Li, Y. M.; Sun, Y. G.; Duan, S. Y.; Lu, Y. X.; Ma, J. M.; Cao, A. M.; Hu, Y. S.; Wan, L. J. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode. Adv. Energy Mater. 2018, 8, 1800855.

    Google Scholar 

  58. Li, Q.; Zhang, J.; Zhong, L. X.; Geng, F. S.; Tao, Y.; Geng, C. N.; Li, S. Z.; Hu, B. W.; Yang, Q. H. Unraveling the key atomic interactions in determining the varying Li/Na/K storage mechanism of hard carbon anodes. Adv. Energy Mater. 2022, 12, 2201734.

    CAS  Google Scholar 

  59. Hou, H. S.; Banks, C. E.; Jing, M. J.; Zhang, Y.; Ji, X. B. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv. Mater. 2015, 27, 7861–7866.

    CAS  Google Scholar 

  60. Huang, S. F.; Li, Z. P.; Wang, B.; Zhang, J. J.; Peng, Z. Q.; Qi, R. J.; Wang, J.; Zhao, Y. F. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage. Adv. Funct. Mater. 2018, 28, 1706294.

    Google Scholar 

  61. Li, D. D.; Chen, H. B.; Liu, G. X.; Wei, M.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery. Carbon 2015, 94, 888–894.

    CAS  Google Scholar 

  62. Lotfabad, E. M.; Ding, J.; Cui, K.; Kohandehghan, A.; Kalisvaart, W. P.; Hazelton, M.; Mitlin, D. High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 2014, 8, 7115–7129.

    CAS  Google Scholar 

  63. Luo, W.; Bommier, C.; Jian, Z. L.; Li, X.; Carter, R.; Vail, S.; Lu, Y. H.; Lee, J. J.; Ji, X. L. Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent. ACS Appl. Mater. Interfaces 2015, 7, 2626–2631.

    CAS  Google Scholar 

  64. Qu, Y. H.; Deng, Y. M.; Li, Q.; Zhang, Z. A.; Zeng, F. Y.; Yang, Y.; Xu, K. Core-shell-structured hollow carbon nanofiber@nitrogen-doped porous carbon composite materials as anodes for advanced sodium-ion batteries. J. Mater. Sci. 2017, 52, 2356–2365.

    CAS  Google Scholar 

  65. Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 2016, 6, 1502217.

    Google Scholar 

  66. Zhao, C. L.; Wang, Q. D.; Lu, Y. X.; Li, B. H.; Chen, L. Q.; Hu, Y. S. High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau. Sci. Bull. 2018, 63, 1125–1129.

    CAS  Google Scholar 

  67. Zhong, X. W.; Wu, Y.; Zeng, S. F.; Yu, Y. Carbon and carbon hybrid materials as anodes for sodium-ion batteries. Chem. Asian J. 2018, 13, 1248–1265.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of this work by the National Natural Science Foundation of China (No. 52202302), National Natural Science Foundation of Shaanxi (Nos. 2019JLZ-01 and 2022KXJ-146), the Fundamental Research Funds for the Central Universities (No. 3102019JC005), and the Youth Innovation Team of Shaanxi Universities and ND Basic Research Funds (No. G2022WD).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Shen or Keyu Xie.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, M., Song, Q., Zhang, T. et al. Growing curly graphene layer boosts hard carbon with superior sodium-ion storage. Nano Res. 16, 9299–9309 (2023). https://doi.org/10.1007/s12274-023-5539-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5539-8

Keywords

Navigation