Skip to main content
Log in

Strong interaction between phosphorus and wrinkle carbon sphere promote the performance of phosphorus anode material for lithium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The durable red phosphorus (RP) anode for lithium-ion batteries (LIBs) has attracted great attention owing to its high theoretical specific capacity (2596 mA·h·g−1) and moderate lithiation potential (∼ 0.7 V vs. Li+/Li). However, its intrinsic poor electrical conductivity, enormous volume expansion, and soluble intermediates (lithium polyphosphides, LixPPs) lead to poor cycling performance. To overcome these issues, we introduce a new type of wrinkle carbon spheres as the host for loading phosphorus through a vaporization—condensation strategy. Density functional theory calculations reveal that the wrinkle carbon sphere shows strong binding energy with P4 molecule, accelerating the adsorption and polymerization of P4, thus enhancing RP conversion in the preparation process. In the lithiation/delithiation process, the wrinkle carbon has strong bonding with phosphorus and strong adsorption with LixPPs, resulting in excellent cycling performance. The design strategy to modify RP polymerization via reforming the interaction between wrinkle carbon spheres and phosphorus expands the application of RP for LIBs and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, F.; He, Z. C.; Wang, M. Q.; Huang, Y. D.; Wang, F. Construction of three-dimensional carbon framework-loaded silicon nanoparticles anchored by carbon film for high-performance lithium-ion battery anode materials. Nano Res. 2022, 15, 6168–6175.

    Article  CAS  Google Scholar 

  2. Sheng, Q. Q.; Li, Q.; Xiang, L. X.; Huang, T.; Mai, Y. Y.; Han, L. Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. Nano Res. 2021, 14, 992–997.

    Article  CAS  Google Scholar 

  3. Gao, R. H.; Zhang, Q.; Zhao, Y.; Han, Z. Y.; Sun, C. B.; Sheng, J. Z.; Zhong, X. W.; Chen, B.; Li, C.; Ni, S. Y. et al. Regulating polysulfide redox kinetics on a self-healing electrode for high-performance flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2110313.

    Article  CAS  Google Scholar 

  4. Feng, X. N.; Ren, D. S.; He, X. M.; Ouyang, M. G. Mitigating thermal runaway of lithium-ion batteries. Joule 2020, 4, 743–770.

    Article  CAS  Google Scholar 

  5. Sheng, J. Z.; Zhang, Q.; Sun, C. B.; Wang, J. X.; Zhong, X. W.; Chen, B.; Li, C.; Gao, R. H.; Han, Z. Y.; Zhou, G. M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272.

    Article  CAS  Google Scholar 

  6. Cao, Y.; Wang, M. D.; Wang, H. J.; Han, C. Y.; Pan, F. S.; Sun, J. Covalent organic framework for rechargeable batteries: Mechanisms and properties of ionic conduction. Adv. Energy Mater. 2022, 12, 2200057.

    Article  CAS  Google Scholar 

  7. Li, H.; Gao, R. H.; Chen, B.; Zhou, C.; Shao, F.; Wei, H.; Han, Z. Y.; Hu, N. T.; Zhou, G. M. Vacancy-rich MoSSe with sulfiphilicity-lithiophilicity dual function for kinetics-enhanced and dendrite-free Li-S batteries. Nano Lett. 2022, 22, 4999–5008.

    Article  CAS  Google Scholar 

  8. Huang, X. L.; Zhao, F. Y.; Qi, Y.; Qiu, Y. A.; Chen, J. S.; Liu, H. K.; Dou, S. X.; Wang, Z. M. Red phosphorus: A rising star of anode materials for advanced K-ion batteries. Energy Storage Mater. 2021, 42, 193–208.

    Article  Google Scholar 

  9. Xu, T.; Li, D. H.; Chen, S.; Sun, Y. Y.; Zhang, H. W.; Xia, Y. Z.; Yang, D. J. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage. Chem. Eng. J. 2018, 345, 604–610.

    Article  CAS  Google Scholar 

  10. Liu, H.; Zhang, S. X.; Zhu, Q. Z.; Cao, B.; Zhang, P.; Sun, N.; Xu, B.; Wu, F.; Chen, R. J. Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries. J. Mater. Chem. A 2019, 7, 11205–11213.

    Article  CAS  Google Scholar 

  11. Sun, Y. M.; Wang, L.; Li, Y. B.; Li, Y. Z.; Lee, H. R.; Pei, A.; He, X. M.; Cui, Y. Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density. Joule 2019, 3, 1080–1093.

    Article  CAS  Google Scholar 

  12. Han, X. P.; Sun, J. Improved fast-charging performances of phosphorus electrodes using the intrinsically flame-retardant LiFSI based electrolyte. J. Power Sources 2020, 474, 228664.

    Article  CAS  Google Scholar 

  13. Han, X. P.; Zhang, Z. X.; Han, M. Y.; Cui, Y. R.; Sun, J. Fabrication of red phosphorus anode for fast-charging lithium-ion batteries based on TiN/TiP2-enhanced interfacial kinetics. Energy Storage Mater. 2020, 26, 147–156.

    Article  Google Scholar 

  14. Liu, D.; Huang, X. K.; Qu, D. Y.; Zheng, D.; Wang, G. W.; Harris, J.; Si, J. Y.; Ding, T. Y.; Chen, J. H.; Qu, D. Y. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018, 52, 1–10.

    Article  CAS  Google Scholar 

  15. Zhang, Y. M.; Zhang, S. J.; Cao, Y.; Wang, H. L.; Sun, J. T.; Liu, C.; Han, X. P.; Liu, S.; Yang, Z. X.; Sun, J. Facile separator modification strategy for trapping soluble polyphosphides and enhancing the electrochemical performance of phosphorus anode. Nano Lett. 2022, 22, 1795–1803.

    Article  CAS  Google Scholar 

  16. Han, X. P.; Han, J. P.; Liu, C.; Sun, J. Promise and challenge of phosphorus in science, technology, and application. Adv. Funct. Mater. 2018, 28, 1803471.

    Article  Google Scholar 

  17. Han, X. P.; Wang, X. J.; Han, M. Y.; Sun, J. A full battery system of pre-lithiated phosphorus/sulfurized pyrolyzed poly(acrylonitrile) with an effective electrolyte and improved safety. Green Chem. 2020, 22, 4252–4258.

    Article  CAS  Google Scholar 

  18. Ni, J. F.; Li, L.; Lu, J. Phosphorus: An anode of choice for sodium-ion batteries. ACS Energy Lett. 2018, 3, 1137–1144.

    Article  CAS  Google Scholar 

  19. Bai, A. J.; Wang, L.; Li, J. Y.; He, X. M.; Wang, J. X.; Wang, J. L. Composite of graphite/phosphorus as anode for lithium-ion batteries. J. Power Sources 2015, 289, 100–104.

    Article  CAS  Google Scholar 

  20. Jiao, X. X.; Liu, Y. Y.; Li, B.; Zhang, W. X.; He, C.; Zhang, C. F.; Yu, Z. X.; Gao, T. Y.; Song, J. X. Amorphous phosphorus-carbon nanotube hybrid anode with ultralong cycle life and high-rate capability for lithium-ion batteries. Carbon 2019, 148, 518–524.

    Article  CAS  Google Scholar 

  21. Lin, H. P.; Chen, K. T.; Chang, C. B.; Tuan, H. Y. Aluminum phosphide as a high-performance lithium-ion battery anode. J. Power Sources 2020, 465, 228262.

    Article  CAS  Google Scholar 

  22. Xiao, W.; Li, X. F.; Cao, B.; Huang, G.; Xie, C.; Qin, J.; Yang, H. J.; Wang, J. J.; Sun, X. L. Constructing high-rate and long-life phosphorus/carbon anodes for potassium-ion batteries through rational nanoconfinement. Nano Energy 2021, 83, 105772.

    Article  CAS  Google Scholar 

  23. Li, M.; Feng, N.; Liu, M. M.; Cong, Z. F.; Sun, J. M.; Du, C. H.; Liu, Q. B.; Pu, X.; Hu, W. G. Hierarchically porous carbon/red phosphorus composite for high-capacity sodium-ion battery anode. Sci. Bull. 2018, 63, 982–989.

    Article  CAS  Google Scholar 

  24. Wang, L. Y.; Guo, H. L.; Wang, W.; Teng, K. Y.; Xu, Z. W.; Chen, C.; Li, C. Y.; Yang, C. Y.; Hu, C. S. Preparation of sandwich-like phosphorus/reduced graphene oxide composites as anode materials for lithium-ion batteries. Electrochim. Acta 2016, 211, 499–506.

    Article  CAS  Google Scholar 

  25. Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.

    Article  CAS  Google Scholar 

  26. Han, L. F.; Wang, J. L.; Mu, X. W.; Liao, C.; Cai, W.; Zhao, Z. X.; Kan, Y. C.; Xing, W. Y.; Hu, Y. Anisotropic, low-tortuosity, and ultra-thick red P@C-wood electrodes for sodium-ion batteries. Nanoscale 2020, 12, 14642–14650.

    Article  CAS  Google Scholar 

  27. Sun, J.; Lee, H. W.; Pasta, M.; Sun, Y. M.; Liu, W.; Li, Y. B.; Lee, H. R.; Liu, N.; Cui, Y. Carbothermic reduction synthesis of red phosphorus-filled 3D carbon material as a high-capacity anode for sodium ion batteries. Energy Storage Mater. 2016, 4, 130–136.

    Article  Google Scholar 

  28. Qian, J. F.; Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. High capacity and rate capability of amorphous phosphorus for sodium ion batteries. Angew. Chem., Int. Ed. 2013, 52, 4633–4636.

    Article  CAS  Google Scholar 

  29. He, S. A.; Liu, Q.; Cui, Z.; Xu, K. B.; Zou, R. J.; Luo, W.; Zhu, M. F. Red phosphorus anchored on nitrogen-doped carbon bubble-carbon nanotube network for highly stable and fast-charging lithium-ion batteries. Small 2022, 18, 2105866.

    Article  CAS  Google Scholar 

  30. García-Mateos, F. J.; Rosas, J. M.; Ruiz-Rosas, R.; Rodríguez-Mirasol, J.; Cordero, T. Highly porous and conductive functional carbon fibers from electrospun phosphorus-containing lignin fibers. Carbon 2022, 200, 134–148.

    Article  Google Scholar 

  31. Lee, G. H.; Jo, M. R.; Zhang, K.; Kang, Y. M. A reduced graphene oxide-encapsulated phosphorus/carbon composite as a promising anode material for high-performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 3683–3690.

    Article  CAS  Google Scholar 

  32. Jin, H. C.; Xin, S.; Chuang, C. H.; Li, W. D.; Wang, H. Y.; Zhu, J.; Xie, H. Y.; Zhang, T. M.; Wan, Y. Y.; Qi, Z. K. et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage. Science 2020, 370, 192–197.

    Article  CAS  Google Scholar 

  33. Zhang, S. J.; Liu, C.; Wang, H. L.; Wang, H. P.; Sun, J. T.; Zhang, Y. M.; Han, X. P.; Cao, Y.; Liu, S.; Sun, J. A covalent P—C bond stabilizes red phosphorus in an engineered carbon host for high-performance lithium-ion battery anodes. ACS Nano 2021, 15, 3365–3375.

    Article  CAS  Google Scholar 

  34. Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Niu, S. W.; Cai, J. Y.; Zheng, X. S.; Ye, J.; Lin, Y.; Zheng, L.; Zhu, Z. X. et al. High-spin sulfur-mediated phosphorous activation enables safe and fast phosphorus anodes for sodium-ion batteries. Chem 2020, 6, 221–233.

    Article  CAS  Google Scholar 

  35. Gan, G. Q.; Fan, S. Y.; Li, X. Y.; Wang, J.; Bai, C. P.; Guo, X. C.; Tade, M.; Liu, S. M. Nature of intrinsic defects in carbon materials for electrochemical dechlorination of 1,2-dichloroethane to ethylene. ACS Catal. 2021, 11, 14284–14292.

    Article  CAS  Google Scholar 

  36. Zhu, J. W.; Huang, Y. P.; Mei, W. C.; Zhao, C. Y.; Zhang, C. T.; Zhang, J.; Amiinu, I. S.; Mu, S. C. Effects of intrinsic pentagon defects on electrochemical reactivity of carbon nanomaterials. Angew. Chem., Int. Ed. 2019, 58, 3859–3864.

    Article  CAS  Google Scholar 

  37. Tang, C.; Wang, H. F.; Chen, X.; Li, B. Q.; Hou, T. Z.; Zhang, B. S.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv. Mater. 2016, 28, 6845–6851.

    Article  CAS  Google Scholar 

  38. Liu, C.; Han, M. Y.; Cao, Y.; Chen, L.; Ren, W. C.; Zhou, G. M.; Chen, A. B.; Sun, J. Unlocking the dissolution mechanism of phosphorus anode for lithium-ion batteries. Energy Storage Mater. 2021, 37, 417–423.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hebei Natural Science Foundation (Nos. B02020208088, H2020206514, B2021208074, and D2022208001), the S&T Program of Hebei (Nos. 20544401D, 20314401D, 206Z4406G, 21314402D, 22344402D, 22373709D, 22284601Z, and 21344601D), the National Natural Science Foundation of China (No. 22109038) and the National Key Research and Development Program of China (Nos. 2022YFA1504100 and 2019YFE0118800).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Du, Chong Mao or Aibing Chen.

Electronic Supplementary Material

12274_2023_5499_MOESM1_ESM.pdf

Strong interaction between phosphorus and wrinkle carbon sphere promote the performance of phosphorus anode material for lithium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, S., Du, J. et al. Strong interaction between phosphorus and wrinkle carbon sphere promote the performance of phosphorus anode material for lithium-ion batteries. Nano Res. 16, 9273–9279 (2023). https://doi.org/10.1007/s12274-023-5499-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5499-z

Keywords

Navigation