Skip to main content
Log in

Polyoxovanadate ionic crystals with open tunnels stabilized by macrocations for lithium-ion storage

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Polyoxometalates (POMs) with multiple redox active sites have been reported as charge sponge for lithium-ion batteries (LIBs). Herein, we for the first time introduce a polyoxovanadate (POV) ionic crystals with macrocations, [Ni(Phen)3][ClV14O34]Cl (NiV14, Phen = 1,10-phenanthroline), as an anode material for LIBs. The existence of macrocation [Ni(Phen)3]2+ stabilizes the open tunnels inside NiV14. The NiV14 electrode exhibits superior rate capabilities (1083 mAh·g−1 at 100 mA·g−1 and 384 mAh·g−1 at 2000 mA·g−1) due to the rapid capacitive dominated contribution and high Li+ ions diffusion coefficients (3.3 × 10−12 cm−2·s−1), and it delivers a remarkable cycling stability with a Coulombic efficiency of 99.7% after 1000 cycles at 2000 mA·g−1. Such performance can be attributed to the stable structure of NiV14 and the highly reversible valence changes of vanadium during the charge/discharge processes, which are revealed by a combination of in situ X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure (XAFS) measurements. This work not only demonstrates that NiV14 with open tunnels stabilized by macrocation is a promising anode material for high performance LIBs, but also provides important references for the rational design of POMs electrode materials in advanced energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 47, 540–550.

    Article  Google Scholar 

  2. Liu, S. Q.; Wang, B. Y.; Zhang, X.; Zhao, S.; Zhang, Z. H.; Yu, H. J. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter 2021, 4, 1511–1527.

    Article  CAS  Google Scholar 

  3. Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.

    Article  CAS  Google Scholar 

  4. Weiss, M.; Ruess, R.; Kasnatscheew, J.; Levartovsky, Y.; Levy, N. R.; Minnmann, P.; Stolz, L.; Waldmann, T.; Wohlfahrt-Mehrens, M.; Aurbach, D. et al. Fast charging of lithium-ion batteries: A review of materials aspects. Adv. Energy Mater. 2021, 11, 2101126.

    Article  CAS  Google Scholar 

  5. Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

    Article  CAS  Google Scholar 

  6. Zhao, Y.; Li, X. F.; Yan, B.; Xiong, D. B.; Li, D. J.; Lawes, S.; Sun, X. L. Recent developments and understanding of novel mixed transition-metal oxides as anodes in lithium ion batteries. Adv. Energy Mater. 2016, 6, 1502175.

    Article  Google Scholar 

  7. Liu, S. Q.; Zhang, X.; Yan, P. F.; Cheng, R. F.; Tang, Y. S.; Cui, M.; Wang, B. Y.; Zhang, L. Q.; Wang, X. H.; Jiang, Y. Y. et al. Dual bond enhanced multidimensional constructed composite silicon anode for high-performance lithium ion batteries. ACS Nano 2019, 13, 8854–8864.

    Article  CAS  Google Scholar 

  8. Anjass, M.; Lowe, G. A.; Streb, C. Molecular vanadium oxides for energy conversion and energy storage: Current trends and emerging opportunities. Angew. Chem., Int. Ed. 2021, 60, 7522–7532.

    Article  CAS  Google Scholar 

  9. Yang, L.; Lei, J.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Chen, J. J.; Dong, Q. F. The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Adv. Mater. 2021, 33, 2005019.

    Article  CAS  Google Scholar 

  10. Liu, J. L.; Chen, Z.; Chen, S.; Zhang, B. W.; Wang, J.; Wang, H. H.; Tian, B. B.; Chen, M. H.; Fan, X. F.; Huang, Y. Z. et al. “Electron/ion sponge”-like V-based polyoxometalate: Toward high-performance cathode for rechargeable sodium ion batteries. ACS Nano 2017, 11, 6911–6920.

    Article  CAS  Google Scholar 

  11. Ji, Y. C.; Huang, L. J.; Hu, J.; Streb, C.; Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789.

    Article  CAS  Google Scholar 

  12. Chen, J. J.; Symes, M. D.; Fan, S. C.; Zheng, M. S.; Miras, H. N.; Dong, Q. F.; Cronin, L. High-performance polyoxometalate-based cathode materials for rechargeable lithium-ion batteries. Adv. Mater. 2015, 27, 4649–4654.

    Article  CAS  Google Scholar 

  13. Nishimoto, Y.; Yokogawa, D.; Yoshikawa, H.; Awaga, K.; Irle, S. Super-reduced polyoxometalates: Excellent molecular cluster battery components and semipermeable molecular capacitors. J. Am. Chem. Soc. 2014, 136, 9042–9052.

    Article  CAS  Google Scholar 

  14. Chen, X. X.; Wang, Z.; Zhang, R. R.; Xu, L. Q.; Sun, D. A novel polyoxometalate-based hybrid containing a 2D [CoMo8O26] structure as the anode for lithium-ion batteries. Chem. Commun. 2017, 53, 10560–10563.

    Article  CAS  Google Scholar 

  15. Huang, S. C.; Lin, C. C.; Hu, C. W.; Liao, Y. F.; Chen, T. Y.; Chen, H. Y. Vanadium-based polyoxometalate as electron/ion sponge for lithium-ion storage. J. Power Sources 2019, 435, 226702.

    Article  CAS  Google Scholar 

  16. Lin, C. C.; Hsu, C. T.; Liu, W.; Huang, S. C.; Lin, M. H.; Kortz, U.; Mougharbel, A. S.; Chen, T. Y.; Hu, C. W.; Lee, J. F. et al. In operando X-ray studies of high-performance lithium-ion storage in Keplerate-type polyoxometalate anodes. ACS Appl. Mater. Interfaces 2020, 12, 40296–40309.

    Article  CAS  Google Scholar 

  17. Shimoyama, Y.; Uchida, S. Structure-function relationships of porous ionic crystals (PICs) based on polyoxometalate anions and oxo-centered trinuclear metal carboxylates as counter cations. Chem. Lett. 2021, 50, 21–30.

    Article  CAS  Google Scholar 

  18. Uchida, S.; Mizuno, N. Design and syntheses of nano-structured ionic crystals with selective sorption properties. Coord. Chem. Rev. 2007, 251, 2537–2546.

    Article  CAS  Google Scholar 

  19. Iqbal, B.; Jia, X. Y.; Hu, H. B.; He, L.; Chen, W.; Song, Y. F. Fabrication of redox-active polyoxometalate-based ionic crystals onto single-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Inorg. Chem. Front. 2020, 7, 1420–1427.

    Article  CAS  Google Scholar 

  20. Wang, Y.; Liu, C. Y.; Wang, Y.; Zhu, C. F.; Chen, X. H.; Liu, B. Efficient photo-thermo-electric conversion using polyoxovanadate in ionic liquid for low-grade heat utilization. ChemSusChem 2021, 14, 5434–5441.

    Article  CAS  Google Scholar 

  21. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q. A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 2016, 3, 1500213.

    Article  Google Scholar 

  22. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  CAS  Google Scholar 

  23. Huang, Q.; Wei, T.; Zhang, M.; Dong, L. Z.; Zhang, A. M.; Li, S. L.; Liu, W. J.; Liu, J.; Lan, Y. Q. A highly stable polyoxometalate-based metal-organic framework with π−π stacking for enhancing lithium ion battery performance. J. Mater. Chem. A 2017, 5, 8477–8483.

    Article  CAS  Google Scholar 

  24. Yang, K.; Hu, Y. Y.; Li, L. Y.; Cui, L. L.; He, L.; Wang, S. J.; Zhao, J. W.; Song, Y. F. First high-nuclearity mixed-valence polyoxometalate with hierarchical interconnected Zn2+ migration channels as an advanced cathode material in aqueous zinc-ion battery. Nano Energy 2020, 74, 104851.

    Article  CAS  Google Scholar 

  25. Wang, Y. Y.; Zhang, M.; Li, S. L.; Zhang, S. R.; Xie, W.; Qin, J. S.; Su, Z. M.; Lan, Y. Q. Diamondoid-structured polymolybdate-based metal-organic frameworks as high-capacity anodes for lithium-ion batteries. Chem. Commun. 2017, 53, 5204–5207.

    Article  CAS  Google Scholar 

  26. Sun, K.; Li, H. Q.; Ye, H. J.; Jiang, F. Q.; Zhu, H.; Yin, J. 3D-structured polyoxometalate microcrystals with enhanced rate capability and cycle stability for lithium-ion storage. ACS Appl. Mater. Interfaces 2018, 10, 18657–18664.

    Article  CAS  Google Scholar 

  27. Rui, X. H.; Yesibolati, N.; Li, S. R.; Yuan, C. C.; Chen, C. H. Determination of the chemical diffusion coefficient of Li+ in intercalation-type Li3V2(PO4)3 anode material. Solid State Ionics 2011, 187, 58–63.

    Article  CAS  Google Scholar 

  28. Liu, Q.; Liu, Y. D.; Sun, C. J.; Li, Z. F.; Ren, Y.; Lu, W. Q.; Stach, E. A.; Xie, J. The structural evolution of V2O5 nanocystals during electrochemical cycling studied using in operando synchrotron techniques. Electrochim. Acta 2014, 136, 318–322.

    Article  CAS  Google Scholar 

  29. Liu, Q.; Li, Z. F.; Liu, Y. D.; Zhang, H. Y.; Ren, Y.; Sun, C. J.; Lu, W. Q.; Zhou, Y.; Stanciu, L.; Stach, E. A. et al. Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries. Nat. Commun. 2015, 6, 6127.

    Article  Google Scholar 

  30. Uematsu, S.; Quan, Z.; Suganuma, Y.; Sonoyama, N. Reversible lithium charge-discharge property of bi-capped Keggin-type polyoxovanadates. J. Power Sources 2012, 217, 13–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from Hefei National Laboratory for Physical Sciences at the Microscale, Hefei Science Center of Chinese Academy of Sciences, Fujian Institute of Innovation of Chinese Academy of Sciences, the National Natural Science Foundation of China (Nos. 21571167, 51502282, and 22075266), and the Fundamental Research Funds for the Central Universities (Nos. WK2060190053 and WK2060190100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, L., Liu, C. et al. Polyoxovanadate ionic crystals with open tunnels stabilized by macrocations for lithium-ion storage. Nano Res. 16, 9267–9272 (2023). https://doi.org/10.1007/s12274-023-5491-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5491-7

Keywords

Navigation