Skip to main content
Log in

An ultra-sensitive metasurface biosensor for instant cancer detection based on terahertz spectra

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Metasurface biosensors have become the core label-free and rapid-detection technology in bioanalysis. Lung cancer and brain cancer are the first leading causes of cancer death among adults and adolescents, respectively, where poor early diagnosis results from expensive detection costs and time consumption. To tackle the above problems, here, we introduce a terahertz-domain metasurface biosensor for cancer diagnosis, relying on a perfectly symmetrical periodic surface structure, which significantly exhibits polarization-insensitivity at 2.05 THz and the high-sensitivity of 504 GHz/RIU (RIU = refractive index unit). According to the frequency shifts and transmittance variations, four cell types are successfully distinguished from each other. The minimum number of cells is required for thousands of cells to display the differences of spectra, which is 1/30 of clinical methods. Furthermore, the results were consistent with pathological results (the gold standard in clinic) by Gaussian curve fitting. The proposed biosensor has really achieved the characterization of cells in normal and cancerous state. This detection strategy dramatically reduced the cost of detection by reuse and time consumption was reduced to 1/20 of the pathology testing. In addition, it is flexible to set samples and easy to realize automatic operation due to the great polarization-insensitivity of the proposed biosensor, which can further reduce labor costs in the future. It is envisioned that the proposed biosensor will present immense potential in the fields of cancer detection, distinguishing different cancers, and identifying primary lesion cancer or metastatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2021. CA A Cancer J. Clin. 2021, 71, 7–33.

    Google Scholar 

  2. Miller, K. D.; Ostrom, Q. T.; Kruchko, C.; Patil, N.; Tihan, T.; Cioffi, G.; Fuchs, H. E.; Waite, K. A.; Jemal, A.; Siegel, R. L. et al. Brain and other central nervous system tumor statistics, 2021. CA A Cancer J Clin. 2021, 71, 381–406.

    Google Scholar 

  3. Herbst, R. S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454.

    CAS  Google Scholar 

  4. Carter, B.; Zhao, K. J. The epigenetic basis of cellular heterogeneity. Nat. Rev. Genet. 2021, 22, 235–250.

    CAS  Google Scholar 

  5. He, Z. Y.; Chen, Z.; Tan, M. D.; Elingarami, S.; Liu, Y.; Li, T. T.; Deng, Y.; He, N. Y.; Li, S.; Fu, J. et al. A review on methods for diagnosis of breast cancer cells and tissues. Cell Proliferat. 2020, 53, e12822.

    Google Scholar 

  6. Min, L.; Wang, B. S.; Bao, H. R.; Li, X. R.; Zhao, L. B.; Meng, J. X.; Wang, S. T. Advanced nanotechnologies for extracellular vesicle-based liquid biopsy. Adv. Sci. (Weinh.) 2021, 8, 2102789.

    CAS  Google Scholar 

  7. Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res. 2021, 14, 3096–3111.

    CAS  Google Scholar 

  8. Zhang, D. Z.; Wang, M. Y.; Tang, M. C.; Song, X. S.; Zhang, X. X.; Kang, Z. J.; Liu, X. H.; Zhang, J. H.; Xue, Q. Z. Recent progress of diversiform humidity sensors based on versatile nanomaterials and their prospective applications. Nano Res., in press, https://doi.org/10.1007/s12274-022-4917-y.

  9. Ahmed, M. U.; Saaem, I.; Wu, P. C.; Brown, A. S. Personalized diagnostics and biosensors: A review of the biology and technology needed for personalized medicine. Crit. Rev. Biotechnol. 2014, 34, 180–196.

    Google Scholar 

  10. Beruete, M.; Jáuregui-López, I. Terahertz sensing based on metasurfaces. Adv. Opt. Mater. 2020, 8, 1900721.

    CAS  Google Scholar 

  11. Hillenbrand, R.; Taubner, T.; Keilmann, F. Phonon-enhanced light-matter interaction at the nanometre scale. Nature 2002, 418, 159–162.

    CAS  Google Scholar 

  12. Qin, W.; Miranowicz, A.; Li, P. B.; Lü, X. Y.; You, J. Q.; Nori, F. Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification. Phys. Rev. Lett. 2018, 120, 093601.

    CAS  Google Scholar 

  13. Smith, D. R.; Pendry, J. B.; Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 2004, 305, 788–792.

    CAS  Google Scholar 

  14. Zhao, Y. N.; Huang, J.; Huang, Q.; Tao, Y. B.; Gu, R. Q.; Li, H. Y.; Liu, H. Electrochemical biosensor employing PbS colloidal quantum dots/Au nanospheres-modified electrode for ultrasensitive glucose detection. Nano Res., in press, https://doi.org/10.1007/s12274-022-5138-0.

  15. Lei, X. L.; Xu, X. X.; Liu, L. Q.; Xu, L. G.; Wang, L.; Kuang, H.; Xu, C. L. Gold-nanoparticle-based multiplex immuno-strip biosensor for simultaneous determination of 83 antibiotics. Nano Res., in press, https://doi.org/10.1007/s12274-022-4762-z.

  16. Papasimakis, N.; Fedotov, V. A.; Savinov, V.; Raybould, T. A.; Zheludev, N. I. Electromagnetic toroidal excitations in matter and free space. Nat. Mater. 2016, 15, 263–271.

    CAS  Google Scholar 

  17. Kaelberer, T.; Fedotov, V. A.; Papasimakis, N.; Tsai, D. P.; Zheludev, N. I. Toroidal dipolar response in a metamaterial. Science 2010, 330, 1510–1512.

    CAS  Google Scholar 

  18. Gupta, M.; Singh, R. Toroidal metasurfaces in a 2D flatland. Rev. Phys. 2020, 5, 100040.

    Google Scholar 

  19. Ahmadivand, A.; Gerislioglu, B.; Ahuja, R.; Mishra, Y. K. Terahertz plasmonics: The rise of toroidal metadevices towards immunobiosensings. Mater. Today 2020, 32, 108–130.

    CAS  Google Scholar 

  20. Rodrigo, D.; Tittl, A.; Ait-Bouziad, N.; John-Herpin, A.; Limaj, O.; Kelly, C.; Yoo, D.; Wittenberg, N. J.; Oh, S. H.; Lashuel, H. A. et al. Resolving molecule-specific information in dynamic lipid membrane processes with multi-resonant infrared metasurfaces. Nat. Commun. 2011, 9, 2160.

    Google Scholar 

  21. Lawrence, M.; Barton, D. R.; Dixon, J.; Song, J. H.; Van De Groep, J.; Brongersma, M. L.; Dionne, J. A. High quality factor phase gradient metasurfaces. Nat. Nanotechnol. 2020, 15, 956–961.

    CAS  Google Scholar 

  22. Wu, D.; Liu, Y. M.; Yu, L.; Yu, Z. Y.; Chen, L.; Li, R. F.; Ma, R.; Liu, C.; Zhang, J. Q. N.; Ye, H. Plasmonic metamaterial for electromagnetically induced transparency analogue and ultra-high figure of merit sensor. Sci. Rep. 2017, 7, 45210.

    CAS  Google Scholar 

  23. Meng, F. Y.; Wu, Q.; Erni, D.; Wu, K.; Lee, J. C. Polarization-independent metamaterial analog of electromagnetically induced transparency for a refractive-index-based sensor. IEEE Trans. Microwave Theory Techn. 2012, 60, 3013–3022.

    Google Scholar 

  24. Wang, C. Q.; Jiang, X. F.; Zhao, G. M.; Zhang, M. Z.; Hsu, C. W.; Peng, B.; Stone, A. D.; Jiang, L.; Yang, L. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 2020, 16, 334–340.

    CAS  Google Scholar 

  25. Marangos, J. P. Electromagnetically induced transparency. J. Mod. Opt. 1998, 45, 471–503.

    CAS  Google Scholar 

  26. Xiang, Z. X.; Tang, C. X.; Chang, C.; Liu, G. Z. A new viewpoint and model of neural signal generation and transmission: Signal transmission on unmyelinated neurons. Nano Res. 2021, 14, 590–600.

    Google Scholar 

  27. Tan, X. X.; Wu, K. J.; Liu, S.; Yuan, Y. F.; Chang, C.; Xiong, W. Minimal-invasive enhancement of auditory perception by terahertz wave modulation. Nano Res. 2022, 15, 5235–5244.

    Google Scholar 

  28. Wang, K. C.; Wang, S. M.; Yang, L. X.; Wu, Z.; Zeng, B. Q.; Gong, Y. B. THz trapped ion model and THz spectroscopy detection of potassium channels. Nano Res. 2022, 15, 3825–3833.

    CAS  Google Scholar 

  29. Lou, J.; Xu, X.; Huang, Y. D.; Yu, Y.; Wang, J.; Fang, G. Y.; Liang, J. G.; Fan, C. H.; Chang, C. Optically controlled ultrafast terahertz metadevices with ultralow pump threshold. Small 2021, 17, 2104275.

    CAS  Google Scholar 

  30. Wang, P. L.; Lou, J.; Fang, G. Y.; Chang, C. Progress on cutting-edge infrared-terahertz biophysics. IEEE Trans. Microwave Theory Techn. 2022, 70, 5117–5140.

    Google Scholar 

  31. Ferguson, B.; Zhang, X. C. Materials for terahertz science and technology. Nat. Mater. 2002, 1, 26–33.

    CAS  Google Scholar 

  32. Zhang, X. C.; Shkurinov, A.; Zhang, Y. Extreme terahertz science. Nat. Photon. 2017, 11, 16–18.

    CAS  Google Scholar 

  33. Sengupta, K.; Nagatsuma, T.; Mittleman, D. M. Terahertz integrated electronic and hybrid electronic-photonic systems. Nat. Electron. 2018, 1, 622–635.

    Google Scholar 

  34. Song, B.; Shu, Y. S. Cell vibron polariton resonantly self-confined in the myelin sheath of nerve. Nano Res. 2020, 13, 38–44.

    CAS  Google Scholar 

  35. Siegel, P. H. Terahertz technology in biology and medicine. IEEE Trans. Microwave Theory Techn. 2004, 52, 2438–2447.

    Google Scholar 

  36. Dhillon, S. S.; Vitiello, M. S.; Linfield, E. H.; Davies, A. G.; Hoffmann, M. C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G. P. et al. The 2017 terahertz science and technology roadmap. J. Phys. D Appl. Phys. 2017, 50, 043001.

    Google Scholar 

  37. Li, N.; Peng, D. L.; Zhang, X. J.; Shu, Y. S.; Zhang, F.; Jiang, L.; Song, B. Demonstration of biophoton-driven DNA replication via gold nanoparticle-distance modulated yield oscillation. Nano Res. 2021, 14, 40–45.

    Google Scholar 

  38. Lou, J.; Jiao, Y. N.; Yang, R. S.; Huang, Y. D.; Xu, X.; Zhang, L.; Ma, Z. F.; Yu, Y.; Peng, W. Y.; Yuan, Y. F. et al. Calibration-free, high-precision, and robust terahertz ultrafast metasurfaces for monitoring gastric cancers. Proc. Nat. l Acad. Sci. USA 2022, 119, e2209218119.

    CAS  Google Scholar 

  39. Yan, X.; Yang, M. S.; Zhang, Z.; Liang, L. J.; Wei, D. Q.; Wang, M.; Zhang, M.; Wang, T.; Liu, L. H.; Xie, J. H. et al. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosen. Bioelectron. 2019, 126, 485–492.

    CAS  Google Scholar 

  40. Keshavarz, A.; Vafapour, Z. Water-based terahertz metamaterial for skin cancer detection application. IEEE Sensors J. 2019, 19, 1519–1524.

    CAS  Google Scholar 

  41. Vafapour, Z.; Troy, W.; Rashidi, A. Colon cancer detection by designing and analytical evaluation of a water-based THz metamaterial perfect absorber. IEEE Sensors J. 2021, 21, 19307–19313.

    CAS  Google Scholar 

  42. Zhang, C. B.; Xue, T. J.; Zhang, J.; Liu, L. H.; Xie, J. H.; Wang, G. M.; Yao, J. Q.; Zhu, W. R.; Ye, X. D. Terahertz toroidal metasurface biosensor for sensitive distinction of lung cancer cells. Nanophotonics 2022, 11, 101–109.

    CAS  Google Scholar 

  43. Zhan, X. Y.; Yang, S.; Huang, G. R.; Yang, L. H.; Zhang, Y.; Tian, H. Y.; Xie, F. X.; De La Chapelle, M. L.; Yang, X.; Fu, W. L. Streptavidin-functionalized terahertz metamaterials for attomolar exosomal microRNA assay in pancreatic cancer based on duplex-specific nuclease-triggered rolling circle amplification. Biosens. Bioelectron. 2021, 188, 113314.

    CAS  Google Scholar 

  44. Soncin, I.; Sheng, J. P.; Chen, Q.; Foo, S.; Duan, K. B.; Lum, J.; Poidinger, M.; Zolezzi, F.; Karjalainen, K.; Ruedl, C. The tumour microenvironment creates a niche for the self-renewal of tumour-promoting macrophages in colon adenoma. Nat. Commun. 2018, 9, 582.

    Google Scholar 

  45. Wu, Y. Q.; Jiao, N.; Zhu, R. X.; Zhang, Y. D.; Wu, D. F.; Wang, A. J.; Fang, S.; Tao, L. W.; Li, Y. C.; Cheng, S.; et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 2021, 12, 3063.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 12225511, T2241002, and 61988102,) and XPLORER PRIZE of C. C.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Sun, Guangyou Fang or Chao Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Lou, J., Yu, Y. et al. An ultra-sensitive metasurface biosensor for instant cancer detection based on terahertz spectra. Nano Res. 16, 7304–7311 (2023). https://doi.org/10.1007/s12274-023-5386-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5386-7

Keywords

Navigation