Skip to main content
Log in

Application of SnOx/AC catalyst for the acetylene hydrochlorination

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this work, SnOx/activated carbon (AC) was synthesized by hydrothermal method, which was applied to acetylene hydrochlorination. Characterizations showed the SnOx nanoparticles were uniformly dispersed on the carbon, with the co-existence of SnO and SnO2. The acetylene conversion of SnOx/AC was 75%, much higher than that of SnCl4/AC. It was shown that the adsorption of reactants on SnOx was stronger than on SnCl4. Theoretical calculations showed the adsorption energies of reactants on SnOx were thermodynamically favorable and suggested that Sn4+ and Sn2+ in SnOx have different adsorption capacities for reactants. Through adjusting the valence ratio of SnOx, SnOx/AC O 4 h (O for oxidation) exhibited the best catalytic performance and had the strongest adsorption capacity for the reactants. However, the SnOx/AC catalyst was easily deactivated during acetylene hydrochlorination due to the loss of Sn. The doping of N effectively reduced the loss of Sn and improved the stability of the catalyst due to the anchoring effect of N on the SnOx particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J. L.; Liu, N.; Li, W.; Dai, B. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Front. Chem. Sci. Eng. 2011, 5, 514–520.

    Article  CAS  Google Scholar 

  2. Huang, C. F.; Zhu, M. Y.; Kang, L. H.; Li, X. Y.; Dai, B. Active carbon supported TiO2−AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction. Chem. Eng. J. 2014, 242, 69–75.

    Article  CAS  Google Scholar 

  3. Shang, S. S.; Zhao, W.; Wang, Y.; Li, X. Y.; Zhang, J. L.; Han, Y.; Li, W. Highly efficient Ru@IL/AC to substitute mercuric catalyst for acetylene hydrochlorination. ACS Catal. 2017, 7, 3510–3520.

    Article  CAS  Google Scholar 

  4. Conte, M.; Carley, A. F.; Heirene, C.; Willock, D. J.; Johnston, P.; Herzing, A. A.; Kiely, C. J.; Hutchings, G. J. Hydrochlorination of acetylene using a supported gold catalyst: A study of the reaction mechanism. J. Catal. 2007, 250, 231–239.

    Article  CAS  Google Scholar 

  5. Kiyonori, S. The vapor-phase hidrochlorination of acetylene over metal chlorides supported on activated carbon. Chem. Lett. 1975, 4, 219–220.

    Article  Google Scholar 

  6. Dai, B.; Li, X. Y.; Zhang, J. L.; Yu, F.; Zhu, M. Y. Application of mesoporous carbon nitride as a support for an Au catalyst for acetylene hydrochlorination. Chem. Eng. Sci. 2015, 135, 472–478.

    Article  CAS  Google Scholar 

  7. Hutchings, G. J. Vapor phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal chloride catalysts. J. Catal. 1985, 96, 292–295.

    Article  CAS  Google Scholar 

  8. Mitchenko, S. A.; Krasnyakova, T. V.; Mitchenko, R. S.; Korduban, A. N. Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt. J. Mol. Catal. A Chem. 2007, 275, 101–108.

    Article  CAS  Google Scholar 

  9. Wang, B. L.; Yue, Y. X.; Jin, C. X.; Lu, J. Y.; Wang, S. S.; Yu, L.; Guo, L. L.; Li, R. R.; Hu, Z. T.; Pan, Z. Y. et al. Hydrochlorination of acetylene on single-atom Pd/N-doped carbon catalysts: Importance of pyridinic-N synergism. Appl. Catal. B Environ. 2020, 272, 118944.

    Article  CAS  Google Scholar 

  10. Wang, X. L.; Lan, G. J.; Liu, H. Z.; Zhu, Y. H.; Li, Y. Effect of acidity and ruthenium species on catalytic performance of ruthenium catalysts for acetylene hydrochlorination. Catal. Sci. Technol. 2018, 8, 6143–6149.

    Article  CAS  Google Scholar 

  11. Han, Y.; Wang, Y. L.; Wang, Y.; Hu, Y. B.; Nian, Y.; Li, W.; Zhang, J. L. Pyrrolidone ligand improved Cu-based catalysts with high performance for acetylene hydrochlorination. Appl. Organomet. Chem. 2020, 35, e6066.

    Google Scholar 

  12. Li, X. Y.; Nian, Y.; Shang, S. S.; Zhang, H. Y.; Zhang, J. L.; Han, Y.; Li, W. Novel nonmetal catalyst of supported tetraphenylphosphonium bromide for acetylene hydrochlorination. Catal. Sci. Technol. 2019, 9, 188–198.

    Article  CAS  Google Scholar 

  13. Zhao, J.; Xu, J. T.; Xu, J. H.; Zhang, T. T.; Di, X. X.; Ni, J.; Li, X. N. Enhancement of Au/AC acetylene hydrochlorination catalyst activity and stability via nitrogen-modified activated carbon support. Chem. Eng. J. 2015, 262, 1152–1160.

    Article  CAS  Google Scholar 

  14. Chen, X. F.; Li, H. X.; Dai, W. L.; Wang, J.; Ran, Y.; Qiao, M. H. Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over the Co−La−B/SiO2 amorphous catalyst and the promoting effect of La-dopant. Appl. Catal. A Gen. 2003, 253, 359–369.

    Article  CAS  Google Scholar 

  15. Li, R. R.; Yue, Y. X.; Chen, Z.; Chen, X. L.; Wang, S. S.; Jiang, Z.; Wang, B. L.; Xu, Q. Q.; Han, D. M.; Zhao, J. Selective hydrogenation of acetylene over Pd-Sn catalyst: Identification of Pd2Sn intermetallic alloy and crystal plane-dependent performance. Appl. Catal. B Environ. 2020, 279, 119348.

    Article  CAS  Google Scholar 

  16. Dong, Y. Z.; Zhang, H. Y.; Li, W.; Sun, M. X.; Guo, C. L.; Zhang J. L. Bimetallic Au−Sn/AC catalysts for acetylene hydrochlorination. J. Ind. Eng. Chem. 2016, 35, 177–184.

    Article  CAS  Google Scholar 

  17. Wu, Y. B.; Li, F. X.; Xue, J. W.; Lv, Z. P. Sn-imidazolates supported on boron and nitrogen-doped activated carbon as novel catalysts for acetylene hydrochlorination. Chem. Eng. Commun. 2019, 207, 1203–1215.

    Article  Google Scholar 

  18. Wu, Y. B.; Li, F. X.; Lv, Z. P.; Xue, J. W. Synthesis and characterization of X-MOF/AC (X = tin or copper) catalysts for the acetylene hydrochlorination. ChemistrySelect 2019, 4, 9403–9409.

    Article  CAS  Google Scholar 

  19. Wu, Y. B.; Li, F. X.; Luo, X. Q.; Tian, G.; Feng, Y. X.; Han, Y. J.; Wang, L.; Chu, S. M.; Cao, Y. L.; Cao, K. S. et al. Tin-sulfur based catalysts for acetylene hydrochlorination. Turk. J. Chem. 2021, 45, 566–576.

    Article  CAS  Google Scholar 

  20. Yao, Y.; Chang, C. Y.; Li, R. R.; Guo, D.; Liu, Z. X.; Pu, X.; Zhai, J. Y. Intrinsic catalytic sites-rich co-doped SnO2 nanoparticles enabling enhanced conversion and capture of polysulfides. Chem. Eng. J. 2022, 431, 134033.

    Article  CAS  Google Scholar 

  21. Kocemba, I.; Rynkowski, J. M. The effect of oxygen adsorption on catalytic activity of SnO2 in CO oxidation. Catal. Today 2011, 169, 192–199.

    Article  CAS  Google Scholar 

  22. Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

    Article  CAS  Google Scholar 

  23. Vosko, S. H.; Wilk, L.; Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 1980, 58, 1200–1211.

    Article  CAS  Google Scholar 

  24. Frisch, M. J.; Trucks, G. W.; Schlegel, J.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Schlegel, H. B.; Scalmani, G.; Barone, V.; Mennucci, B. et al. Gaussian 09, Revision C.01. Wallingford: Gaussian, Inc., 2010.

    Google Scholar 

  25. Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Al-Laham, M. A.; Shirley, W. A.; Mantzaris, J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988, 89, 2193–2218.

    Article  CAS  Google Scholar 

  26. Petersson, G. A.; Al-Laham, M. A. A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J. Chem. Phys. 1991, 94, 6081–6090.

    Article  CAS  Google Scholar 

  27. Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283.

    Article  CAS  Google Scholar 

  28. Wadt, W. R.; Hay, P. J. Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 1985, 82, 284–298.

    Article  CAS  Google Scholar 

  29. Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.

    Article  CAS  Google Scholar 

  30. Barreira, E. V.; Pedrini, L. F. K.; Boratto, M. H.; Scalvi, L. V. A. A dynamic time-temperature-dependent process for thermal oxidation of Sn leading to SnOx thin films: Impedance spectroscopy study. Int. J. Mod. Phys. B 2020, 34, 2050184.

    Article  CAS  Google Scholar 

  31. Gu, J.; Héroguel, F.; Luterbacher, J.; Hu, X. L. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew. Chem., Int. Ed. 2018, 11, 2993–2997.

    Article  Google Scholar 

  32. Tao, B. L.; Yan, Z. F. In-situ synthesis of highly efficient visible light driven stannic oxide/graphitic carbon nitride heterostructured photocatalysts. J. Colloid Interface Sci. 2016, 480, 118–125.

    Article  CAS  Google Scholar 

  33. Deng, P. M.; Wei, G. G.; Fang, Z. Q.; Ning, H. L.; Liang, Z. H.; Zhang, X.; Yuan, W. J.; Wang, Y. P.; Yao, R. H.; Peng, J. B. Sol-gel synthesis of large-sized polycrystalline stannous oxide and its oxidation behavior. CrystEngComm 2020, 22, 1834–1838.

    Article  CAS  Google Scholar 

  34. Shih, P. Y. Effect of CuO on the properties of stannous chlorophosphate glasses. J. Non-Cryst. Solids 2003, 315, 211–218.

    Article  CAS  Google Scholar 

  35. Wang, J.; Deng, B. L.; Chen, H.; Wang, X. R.; Zheng, J. Z. Removal of aqueous Hg(II) by polyaniline: Sorption characteristics and mechanisms. Environ. Sci. Technol. 2009, 43, 5223–5228.

    Article  CAS  Google Scholar 

  36. Li, H.; Wu, B. T.; Wang, J. H.; Wang, F. M.; Zhang, X. B.; Wang, G.; Li, H. C. Efficient and stable Ru(III)-choline chloride catalyst system with low Ru content for non-mercury acetylene hydrochlorination. Chin. J. Catal. 2018, 39, 1770–1781.

    Article  CAS  Google Scholar 

  37. Pan, S. S.; Wang, S.; Zhang, Y. X.; Luo, Y. Y.; Kong, F. Y.; Xu, S. C.; Xu, J. M.; Li, G. H. P-type conduction in nitrogen-doped SnO2 films grown by thermal processing of tin nitride films. Appl. Phys. A 2012, 109, 267–271.

    Article  CAS  Google Scholar 

  38. Kim, Y.; Kim, S. P.; Kim, S. D.; Kim, S. E. Nitrogen-doped transparent tin oxide thin films deposited by sputtering. Curr. Appl. Phys. 2011, 11, S139–S142.

    Article  Google Scholar 

  39. Inoue, Y.; Nomiya, M.; Takai, O. Physical properties of reactive sputtered tin-nitride thin films. Vacuum 1998, 51, 673–676.

    Article  CAS  Google Scholar 

  40. Xu, J.; Mu, Y. K.; Ruan, C. H.; Li, P. X.; Xie, Y. B. S or N-monodoping and S,N-codoping effect on electronic structure and electrochemical performance of tin dioxide: Simulation calculation and experiment validation. Electrochim. Acta 2020, 340, 135950.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Taishan Scholars Program of Shandong Province (No. tsqn202103051), the Science and Technology Project of Xinjiang Bingtuan Supported by Central Government (No. 2022BC001), and the project of scientific research in Shihezi University (No. CXFZ202205).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingyuan Zhu or Bin Dai.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Yin, X., Wang, Q. et al. Application of SnOx/AC catalyst for the acetylene hydrochlorination. Nano Res. 16, 6577–6583 (2023). https://doi.org/10.1007/s12274-022-5365-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5365-4

KEywords

Navigation