Skip to main content
Log in

Phase transformation-induced Mg isotope fractionation in Mg-mediated CaCO3 mineralization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The biomineralization of CaCO3 often involves the transformation of amorphous precursors into crystalline phases, which is regulated by various proteins and inorganic ions such as Mg2+ ions. While the effects of Mg2+ ions on the polymorph and shape of the crystalline CaCO3 have been observed and studied, the interplay between Mg2+ ions and CaCO3 during the mineralization remains unclear. This work focuses on the mechanism of Mg2+ ion-regulated mineralization of CaCO3. By tracing the Mg isotope fractionation, the different mineralization pathways of CaCO3 under different Mg2+ ion concentrations had been clarified. Detailed regulatory role of Mg2+ ions at the different stages of mineralization had been proposed through combining the fractionation data with the analyses of the CaCO3 polymorph and shape evolution. These results provide a clear view of the Mg-mediated crystallization process of amorphous CaCO3, which can be used to finely control the phase of the crystalline products according to different needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gower, L. B. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 2008, 108, 4551–4627.

    Article  CAS  Google Scholar 

  2. Wolf, S. E.; Böhm, C. F.; Harris, J.; Demmert, B.; Jacob, D. E.; Mondeshki, M.; Ruiz-Agudo, E.; Rodríguez-Navarro, C. Nonclassical crystallization in vivo et in vitro (I): Process—structure—property relationships of nanogranular biominerals. J. Struct. Biol. 2016, 196, 244–259.

    Article  CAS  Google Scholar 

  3. Rodríguez-Navarro, C.; Ruiz-Agudo, E.; Harris, J.; Wolf, S. E. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism. J. Struct. Biol. 2016, 196, 260–287.

    Article  Google Scholar 

  4. Rieger, J.; Kellermeier, M.; Nicoleau, L. Formation of nanoparticles and nanostructures—An industrial perspective on CaCO3, cement, and polymers. Angew. Chem., Int. Ed. 2014, 53, 12380–12396.

    CAS  Google Scholar 

  5. Morse, J. W.; Arvidson, R. S.; Lüttge, A. Calcium carbonate formation and dissolution. Chem. Rev. 2007, 107, 342–381.

    Article  CAS  Google Scholar 

  6. Zou, Z. Y.; Habraken, W. J. E. M.; Matveeva, G.; Jensen, A. C. S.; Bertinetti, L.; Hood, M. A.; Sun, C. Y.; Gilbert, P. U. P. A.; Polishchuk, I.; Pokroy, B. et al. A hydrated crystalline calcium carbonate phase: Calcium carbonate hemihydrate. Science 2019, 363, 396–400.

    Article  CAS  Google Scholar 

  7. Jehannin, M.; Rao, A.; Cölfen, H. New horizons of nonclassical crystallization. J. Am. Chem. Soc. 2019, 141, 10120–10136.

    Article  CAS  Google Scholar 

  8. Neira-Carrillo, A.; Vásquez-Quitral, P.; Sánchez, M.; Farhadi-Khouzani, M.; Aguilar-Bolados, H.; Yazdani-Pedram, M.; Cölfen, H. Functionalized multiwalled CNTs in classical and nonclassical CaCO3 crystallization. Nanomaterials 2019, 9, 1169.

    Article  CAS  Google Scholar 

  9. Brunner, J.; Maier, B.; Rosenberg, R.; Sturm, S.; Cölfen, H.; Sturm, E. V. Nonclassical recrystallization. Chem.—Eur. J. 2020, 26, 15242–15248.

    Article  CAS  Google Scholar 

  10. Jin, B.; Liu, Z. M.; Tang, R. K. Recent experimental explorations of non-classical nucleation. CrystEngComm 2020, 22, 4057–4073.

    Article  CAS  Google Scholar 

  11. Purgstaller, B.; Goetschl, K. E.; Mavromatis, V.; Dietzel, M. Solubility investigations in the amorphous calcium magnesium carbonate system. CrystEngComm 2019, 21, 155–164.

    Article  CAS  Google Scholar 

  12. Lopez-Berganza, J. A.; Chen, S. Y.; Espinosa-Marzal, R. M. Tailoring calcite growth through an amorphous precursor in a hydrogel environment. Cryst. Growth Des. 2019, 19, 3192–3205.

    Article  CAS  Google Scholar 

  13. Zou, Z. Y.; Yang, X. F.; Albéric, M.; Heil, T.; Wang, Q. H.; Pokroy, B.; Politi, Y.; Bertinetti, L. Additives control the stability of amorphous calcium carbonate via two different mechanisms: Surface adsorption versus bulk incorporation. Adv. Funct. Mater. 2020, 30, 2000003.

    Article  CAS  Google Scholar 

  14. Zou, Z. Y.; Xie, J. J.; Macías-Sánchez, E.; Fu, Z. Y. Nonclassical crystallization of amorphous calcium carbonate in the presence of phosphate ions. Cryst. Growth Des. 2021, 21, 414–423.

    Article  CAS  Google Scholar 

  15. Zhang, Z. N.; Xie, Y. D.; Xu, X. R.; Pan, H. H.; Tang, R. K. Transformation of amorphous calcium carbonate into aragonite. J. Cryst. Growth 2012, 343, 62–67.

    Article  CAS  Google Scholar 

  16. Xue, Z. H.; Xue, N. The cooperative effect of BSA langmuir monolayers and magnesium ions on calcium carbonate crystallization. Open Access Library J. 2019, 6, e5551.

    Google Scholar 

  17. Chang, C. Y.; Yang, S. Y.; Chan, J. C. C. Solubility product of amorphous magnesium carbonate. J. Chin. Chem. Soc. 2021, 68, 476–481.

    Article  CAS  Google Scholar 

  18. Purgstaller, B.; Mavromatis, V.; Goetschl, K. E.; Steindl, F. R.; Dietzel, M. Effect of temperature on the transformation of amorphous calcium magnesium carbonate with near-dolomite stoichiometry into high Mg-calcite. CrystEngComm 2021, 23, 1969–1981.

    Article  CAS  Google Scholar 

  19. Liu, Y. Y.; Jiang, J.; Gao, M. R.; Yu, B.; Mao, L. B.; Yu, S. H. Phase transformation of magnesium amorphous calcium carbonate (Mg-ACC) in a binary solution of ethanol and water. Cryst. Growth Des. 2013, 13, 59–65.

    Article  CAS  Google Scholar 

  20. Jensen, A. C. S.; Imberti, S.; Habraken, W. J. E. M.; Bertinetti, L. Small ionic radius limits magnesium water interaction in amorphous calcium/magnesium carbonates. J. Phys. Chem. C 2020, 124, 6141–6144.

    Article  CAS  Google Scholar 

  21. Chang, B.; Li, C.; Liu, D.; Foster, I.; Tripati, A.; Lloyd, M. K.; Maradiaga, I.; Luo, G. M.; An, Z. H.; She, Z. B. et al. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proc. Natl. Acad. Sci. USA 2020, 117, 14005–14014.

    Article  CAS  Google Scholar 

  22. Liu, C.; Li, W. Q. Transformation of amorphous precursor to crystalline carbonate: Insights from Mg isotopes in the dolomite-analogue mineral norsethite [BaMg(CO3)2]. Geochim. Cosmochim. Acta 2020, 272, 1–20.

    Article  CAS  Google Scholar 

  23. Xia, Z. G.; Horita, J.; Reuning, L.; Bialik, O. M.; Hu, Z. Y.; Waldmann, N. D.; Liu, C.; Li, W. Q. Extracting Mg isotope signatures of ancient seawater from marine halite: A reconnaissance. Chem. Geol. 2020, 552, 119768.

    Article  CAS  Google Scholar 

  24. Schauble, E. A. First-principles estimates of equilibrium magnesium isotope fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim. Cosmochim. Acta 2011, 75, 844–869.

    Article  CAS  Google Scholar 

  25. Higgins, J. A.; Schrag, D. P. The Mg isotopic composition of Cenozoic seawater-evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet Sci. Lett. 2015, 416, 73–81.

    Article  CAS  Google Scholar 

  26. Rustad, J. R.; Casey, W. H.; Yin, Q. Z.; Bylaska, E. J.; Felmy, A. R.; Bogatko, S. A.; Jackson, V. E.; Dixon, D. A. Isotopic fractionation of Mg2+(aq), Ca2+(aq), and Fe2+(aq) with carbonate minerals. Geochim. Cosmochim. Acta 2010, 74, 6301–6323.

    Article  CAS  Google Scholar 

  27. Mavromatis, V.; Gautier, Q.; Bosc, O.; Schott, J. Kinetics of Mg partition and Mg stable isotope fractionation during its incorporation in calcite. Geochim. Cosmochim. Acta 2013, 114, 188–203.

    Article  Google Scholar 

  28. Li, W. Q.; Beard, B. L.; Li, C. X.; Xu, H. F.; Johnson, C. M. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim. Cosmochim. Acta 2015, 157, 164–181.

    Article  CAS  Google Scholar 

  29. Wang, Z. R.; Hu, P.; Gaetani, G.; Liu, C.; Saenger, C.; Cohen, A.; Hart, S. Experimental calibration of Mg isotope fractionation between aragonite and seawater. Geochim. Cosmochim. Acta 2013, 102, 113–123.

    Article  CAS  Google Scholar 

  30. Politi, Y.; Batchelor, D. R.; Zaslansky, P.; Chmelka, B. F.; Weaver, J. C.; Sagi, I.; Weiner, S.; Addadi, L. Role of magnesium ion in the stabilization of biogenic amorphous calcium carbonate: A structure-function investigation. Chem. Mater. 2010, 22, 161–166.

    Article  CAS  Google Scholar 

  31. Wombacher, F.; Eisenhauer, A.; Böhm, F.; Gussone, N.; Regenberg, M.; Dullo, W. C.; Rüggeberg, A. Magnesium stable isotope fractionation in marine biogenic calcite and aragonite. Geochim. Cosmochim. Acta 2011, 75, 5797–5818.

    Article  CAS  Google Scholar 

  32. Li, W. Q.; Chakraborty, S.; Beard, B. L.; Romanek, C. S.; Johnson, C. M. Magnesium isotope fractionation during precipitation of inorganic calcite under laboratory conditions. Earth Planet Sci. Lett. 2012, 333-334, 304–316.

    Article  Google Scholar 

  33. Yang, S. Y.; Chang, H. H.; Lin, C. J.; Huang, S. J.; Chan, J. C. C. Is Mg-stabilized amorphous calcium carbonate a homogeneous mixture of amorphous magnesium carbonate and amorphous calcium carbonate? Chem. Commun. 2016, 52, 11527–11530.

    Article  CAS  Google Scholar 

  34. Liu, Z. M.; Zhang, Z. S.; Wang, Z. M.; Jin, B.; Li, D. S.; Tao, J. H.; Tang, R. K.; De Yoreo, J. J. Shape-preserving amorphous-to-crystalline transformation of CaCO3 revealed by in situ TEM. Proc. Natl. Acad. Sci. USA 2020, 117, 3397–3404.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Nos. U1932213, 51732011, and 21701161), the National Key Research and Development Program of China (Nos. 2018YFE0202201 and 2021YFA0715700), Science and Technology Major Project of Anhui Province (No. 201903a05020003), and the University Synergy Innovation Program of Anhui Province (No. GXXT-2019-028). The authors acknowledge Zhenwu Chen and Zeng Zheng for Mg isotope chemical purifications and measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Ding, Li-Bo Mao or Shu-Hong Yu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, YM., Huang, F., Ding, X. et al. Phase transformation-induced Mg isotope fractionation in Mg-mediated CaCO3 mineralization. Nano Res. 16, 3597–3602 (2023). https://doi.org/10.1007/s12274-022-5171-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5171-z

Keywords

Navigation