Skip to main content
Log in

Interface electronic engineering of molybdenum sulfide/MXene hybrids for highly efficient biomimetic sensors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interface regulation plays a key role in the electrochemical performance for biosensors. By controlling the interfacial interaction, the electronic structure of active species can be adjusted effectively at micro and nano-level, which results in the optimal reaction energy barrier. Herein, we propose an interface electronic engineering scheme to design a strongly coupled 1T phase molybdenum sulfide (1T-MoS2)/MXene hybrids for constructing an efficient electrocatalytic biomimetic sensor. The local electronic and atomic structures of the 1T-MoS2/Ti3C2TX are comprehensively studied by synchrotron radiation-based X-ray photoelectron spectroscopy (XPS), as well as X-ray absorption spectroscopy (XAS) at atomic level. Experiments and theoretical calculations show that there are interfacial stresses, atomic defects and adjustable bond-length between MoS2/MXene nanosheets, which can significantly promote biomolecular adsorption and rapid electron transfer to achieve excellent electrochemical activity and reaction kinetics. The 1T-MoS2/Ti3C2TX modified electrode shows ultra high sensitivity of 1.198 µA/µM for dopamine detection with low limit of 0.05 µM. We anticipate that the interface electronic engineering investigation could provide a basic idea for guiding the exploration of advanced biosensors with high sensitivity and low detection limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herud-Sikimić, O.; Stiel, A. C.; Kolb, M.; Shanmugaratnam, S.; Berendzen, K. W.; Feldhaus, C.; Höcker, B.; Jürgens, G. A biosensor for the direct visualization of auxin. Nature 2021, 592, 768–772.

    Article  Google Scholar 

  2. Inda, M. E.; Lu, T. K. Microbes as biosensors. Annu. Rev. Microbiol. 2020, 74, 337–359.

    Article  CAS  Google Scholar 

  3. Kim, J.; Campbell, A. S.; de Ávila, B. E. F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406.

    Article  CAS  Google Scholar 

  4. Xiong, C.; Tian, L.; Xiao, C. C.; Xue, Z. G.; Zhou, F. Y.; Zhou, H.; Zhao, Y. F.; Chen, M.; Wang, Q. P.; Qu, Y. T. et al. Construction of highly accessible single Co site catalyst for glucose detection. Sci. Bull. 2020, 65, 2100–2106.

    Article  CAS  Google Scholar 

  5. Wang, Q. P.; Chen, M.; Xiong, C.; Zhu, X. F.; Chen, C.; Zhou, F. Y.; Dong, Y.; Wang, Y.; Xu, J.; Li, Y. M. et al. Dual confinement of high-loading enzymes within metal-organic frameworks for glucose sensor with enhanced cascade biocatalysis. Biosens. Bioelectron. 2022, 196, 113695.

    Article  CAS  Google Scholar 

  6. Zhang, S. M.; Cicoira, F. Flexible self-powered biosensors. Nature 2018, 561, 466–467.

    Article  CAS  Google Scholar 

  7. Condon, M. D.; Platt, N. J.; Zhang, Y. F.; Roberts, B. M.; Clements, M. A.; Vietti-Michelina, S.; Tseu, M. Y.; Brimblecombe, K. R.; Threlfell, S.; Mann, E. O. et al. Plasticity in striatal dopamine release is governed by release-independent depression and the dopamine transporter. Nat. Commun. 2019, 10, 4263.

    Article  Google Scholar 

  8. Xiao, Y. S.; Wang, J. Dopamine: Opening the door of movement. Mov. Disord. 2018, 33, 1269.

    Article  Google Scholar 

  9. Larsen, B.; Olafsson, V.; Calabro, F.; Laymon, C.; Tervo-Clemmens, B.; Campbell, E.; Minhas, D.; Montez, D.; Price, J.; Luna, B. Maturation of the human striatal dopamine system revealed by PET and quantitative MRI. Nat. Commun. 2020, 11, 846.

    Article  CAS  Google Scholar 

  10. Njagi, J.; Chernov, M. M.; Leiter, J. C.; Andreescu, S. Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor. Anal. Chem. 2010, 82, 989–996.

    Article  CAS  Google Scholar 

  11. Zhang, J. L.; Wang, Y. H.; Huang, K.; Huang, K. J.; Jiang, H.; Wang, X. M. Enzyme-based biofuel cells for biosensors and in vivo power supply. Nano Energy 2021, 84, 105853.

    Article  CAS  Google Scholar 

  12. Alagiri, M.; Rameshkumar, P.; Pandikumar, A. Gold nanorod-based electrochemical sensing of small biomolecules: A review. Microchim. Acta 2017, 184, 3069–3092.

    Article  CAS  Google Scholar 

  13. He, W. Z.; Liu, R. T.; Zhou, P.; Liu, Q. Y.; Cui, T. H. Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosens. Bioelectron. 2020, 167, 112473.

    Article  CAS  Google Scholar 

  14. Ramachandran, R.; Leng, X. H.; Zhao, C. H.; Xu, Z. X.; Wang, F. 2D siloxene sheets: A novel electrochemical sensor for selective dopamine detection. Appl. Mater. Today 2020, 18, 100477.

    Article  Google Scholar 

  15. Lei, Y.; Butler, D.; Lucking, M. C.; Zhang, F.; Xia, T. A.; Fujisawa, K.; Granzier-Nakajima, T.; Cruz-Silva, R.; Endo, E.; Terrones, H. et al. Single-atom doping of MoS2 with manganese enables ultrasensitive detection of dopamine: Experimental and computational approach. Sci. Adv. 2020, 6, eabc4250.

    Article  CAS  Google Scholar 

  16. Ahmadi, N.; Bagherzadeh, M.; Nemati, A. Comparison between electrochemical and photoelectrochemical detection of dopamine based on titania-ceria-graphene quantum dots nanocomposite. Biosens. Bioelectron. 2020, 151, 111977.

    Article  CAS  Google Scholar 

  17. Verma, S.; Arya, P.; Singh, A.; Kaswan, J.; Shukla, A.; Kushwaha, H. R.; Gupta, S.; Singh, S. P. ZnO-rGO nanocomposite based bioelectrode for sensitive and ultrafast detection of dopamine in human serum. Biosens. Bioelectron. 2020, 165, 112347.

    Article  CAS  Google Scholar 

  18. Liu, N.; Xiang, X. P.; Fu, L.; Cao, Q.; Huang, R.; Liu, H.; Han, G.; Wu, L. D. Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosens. Bioelectron. 2021, 188, 113340.

    Article  CAS  Google Scholar 

  19. Sajid, M.; Baig, N.; Alhooshani, K. Chemically modified electrodes for electrochemical detection of dopamine: Challenges and opportunities. TrAC Trends Anal. Chem. 2019, 118, 368–385.

    Article  CAS  Google Scholar 

  20. Gong, Q. J.; Han, H. X.; Wang, Y. D.; Yao, C. Z.; Yang, H. Y.; Qiao, J. L. An electrochemical sensor for dopamine detection using poly-tryptophan composited graphene on glassy carbon as the electrode. New Carbon Mater. 2020, 35, 34–41.

    Article  CAS  Google Scholar 

  21. Song, H. S.; Kwon, O. S.; Kim, J. H.; Conde, J.; Artzi, N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens. Bioelectron. 2017, 89, 187–200.

    Article  CAS  Google Scholar 

  22. Tutar, R.; Motealleh, A.; Khademhosseini, A.; Kehr, N. S. Functional nanomaterials on 2D surfaces and in 3D nanocomposite hydrogels for biomedical applications. Adv. Funct. Mater. 2019, 29, 1904344.

    Article  CAS  Google Scholar 

  23. Li, B.; Gil, B.; Power, M.; Gao, A. Z.; Treratanakulchai, S.; Anastasova, S.; Yang, G. Z. Carbon-nanotube-coated 3D microspring force sensor for medical applications. ACS Appl. Mater. Interfaces 2019, 11, 35577–35586.

    Article  CAS  Google Scholar 

  24. Lu, D. X.; Li, J. H.; Wu, Z.; Yuan, L.; Fang, W. H.; Zou, P.; Ma, L.; Wang, X. J. High-activity daisy-like zeolitic imidazolate framework-67/reduced grapheme oxide-based colorimetric biosensor for sensitive detection of hydrogen peroxide. J. Colloid Interface Sci. 2022, 608, 3069–3078.

    Article  CAS  Google Scholar 

  25. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    Article  CAS  Google Scholar 

  26. Kwon, K. C.; Baek, J. H.; Hong, K.; Kim, S. Y.; Jang, H. W. Correction to: Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 2022, 14, 71.

    Article  Google Scholar 

  27. Luo, P.; Zhuge, F. W.; Zhang, Q. F.; Chen, Y. Q.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26–51.

    Article  CAS  Google Scholar 

  28. Lei, S. D.; Wang, X. F.; Li, B.; Kang, J. H.; He, Y. M.; George, A.; Ge, L. H.; Gong, Y. J.; Dong, P.; Jin, Z. H. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotechnol. 2016, 11, 465–471.

    Article  CAS  Google Scholar 

  29. Wang, Y. C.; Ren, B. Y.; Ou, J. Z.; Xu, K.; Yang, C. H.; Li, Y. X.; Zhang, H. J. Engineering two-dimensional metal oxides and chalcogenides for enhanced electro-and photocatalysis. Sci. Bull. 2021, 66, 1228–1252.

    Article  CAS  Google Scholar 

  30. Vancsó, P.; Popov, Z. I.; Pető, J.; Ollár, T.; Dobrik, G.; Pap, J. S.; Hwang, C.; Sorokin, P. B.; Tapasztó, L. Transition metal chalcogenide single layers as an active platform for single-atom catalysis. ACS Energy Lett. 2019, 4, 1947–1953.

    Article  Google Scholar 

  31. Chou, S. S.; De, M.; Kim, J.; Byun, S.; Dykstra, C.; Yu, J.; Huang, J. X.; Dravid, V. P. Ligand conjugation of chemically exfoliated MoS2. J. Am. Chem. Soc. 2013, 135, 4584–4587.

    Article  CAS  Google Scholar 

  32. Lu, J. P.; Lu, J. H.; Liu, H. W.; Liu, B.; Gong, L. L.; Tok, E. S.; Loh, K. P.; Sow, C. H. Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 2015, 11, 1792–1800.

    Article  CAS  Google Scholar 

  33. Karimipour, M.; Khazraei, S.; Kim, B. J.; Boschloo, G.; Johansson, E. M. J. Efficient and bending durable flexible perovskite solar cells via interface modification using a combination of thin MoS2 nanosheets and molecules binding to the perovskite. Nano Energy 2022, 95, 107044.

    Article  CAS  Google Scholar 

  34. Mitterreiter, E.; Schuler, B.; Micevic, A.; Hernangómez-Pérez, D.; Barthelmi, K.; Cochrane, K. A.; Kiemle, J.; Sigger, F.; Klein, J.; Wong, E. et al. The role of chalcogen vacancies for atomic defect emission in MoS2. Nat. Commun. 2021, 12, 3822.

    Article  CAS  Google Scholar 

  35. Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

    Article  CAS  Google Scholar 

  36. Li, D. Y.; Zhao, L. L.; Xia, Q.; Wang, J.; Liu, X. M.; Xu, H. R.; Chou, S. L. Activating MoS2 Nanoflakes via Sulfur Defect Engineering Wrapped on CNTs for Stable and Efficient Li-O2 Batteries. Adv. Funct. Mater. 2022, 32, 2108153.

    Article  CAS  Google Scholar 

  37. Yilmaz, G.; Yang, T.; Du, Y. H. Yu, X. J.; Feng, Y. P.; Shen, L.; Ho, G. W. Stimulated electrocatalytic hydrogen evolution activity of MOF-derived MoS2 basal domains via charge injection through surface functionalization and heteroatom doping. Adv. Sci. 2019, 6, 1900140.

    Article  Google Scholar 

  38. Zhu, H. Y.; Gan, X.; McCreary, A.; Lv, R. T.; Lin, Z.; Terrones, M. Heteroatom doping of two-dimensional materials: From graphene to chalcogenides. Nano Today 2020, 30, 100829.

    Article  Google Scholar 

  39. Yang, W. W.; Zhang, S. Q.; Chen, Q.; Zhang, C.; Wei, Y.; Jiang, H. N.; Lin, Y. X.; Zhao, M. T.; He, Q. Q.; Wang, X. G. et al. Conversion of intercalated MoO3 to multi-heteroatoms-doped MoS2 with high hydrogen evolution activity. Adv. Mater. 2020, 32, 2001167.

    Article  CAS  Google Scholar 

  40. Liu, F. R.; Wang, N.; Shi, C. S.; Sha, J. W.; Ma, L. Y.; Liu, E. Z.; Zhao, N. Q. Phosphorus doping of 3D structural MoS2 to promote catalytic activity for lithium-sulfur batteries. Chem. Eng. J. 2022, 431, 133923.

    Article  CAS  Google Scholar 

  41. Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.

    Article  CAS  Google Scholar 

  42. Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

    Article  CAS  Google Scholar 

  43. Huang, Y. L.; Chen, W.; Wee, A. T. S. Two-dimensional magnetic transition metal chalcogenides. SmartMat 2021, 2, 139–153.

    Article  CAS  Google Scholar 

  44. Jiang, K.; Luo, M.; Liu, Z. Z.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; De Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

    Article  CAS  Google Scholar 

  45. Liu, D. B.; Xu, W. Y.; Liu, Q.; He, Q.; Haleem, Y. A.; Wang, C. D.; Xiang, T.; Zou, C. W.; Chu, W. S.; Zhong, J. et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res. 2016, 9, 2079–2087.

    Article  CAS  Google Scholar 

  46. Feng, Y. Y.; Zhang, T.; Zhang, J. H.; Fan, H.; He, C.; Song, J. X. 3D 1T-MoS2/CoS2 heterostructure via interface engineering for ultrafast hydrogen evolution reaction. Small 2020, 16, 2002850.

    Article  CAS  Google Scholar 

  47. Sun, X.; Deng, H. T.; Zhu, W. G.; Yu, Z.; Wu, C. Z.; Xie Y. Interface engineering in two-dimensional heterostructures: Towards an advanced catalyst for ullmann couplings. Angew. Chem., Int. Ed, 2016, 55, 1704–1709.

    Article  CAS  Google Scholar 

  48. Lu, X. L.; Xu, K.; Tao, S.; Shao, Z. W.; Peng, X.; Bi, W. T.; Chen, P. Z.; Ding, H.; Chu, W. S.; Wu, C. Z. et al. Engineering the electronic structure of two-dimensional subnanopore nanosheets using molecular titanium-oxide incorporation for enhanced photocatalytic activity. Chem. Sci. 2016, 7, 1462–1467.

    Article  CAS  Google Scholar 

  49. Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

    Article  CAS  Google Scholar 

  50. Zou, J.; Wu, J.; Wang, Y. Z.; Deng, F. X.; Jiang, J. Z.; Zhang, Y. Z.; Liu, S.; Zhang, H.; Yu, J. G.; Zhai, T. Y. et al. Additive-mediated intercalation and surface modification of MXenes. Chem. Soc. Rev. 2022, 51, 2972–2990.

    Article  CAS  Google Scholar 

  51. Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon Fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

    Article  CAS  Google Scholar 

  52. Gao, Y. Y.; Liu, G. X.; Bu, T. Z.; Liu, Y. Y.; Qi, Y. C.; Xie, Y. T.; Xu, S. H.; Deng, W. L.; Yang, W. Q.; Zhang, C. MXene based mechanically and electrically enhanced film for triboelectric nanogenerator. Nano Res. 2021, 14, 4833–4840.

    Article  CAS  Google Scholar 

  53. Sun, Y.; Zhou, Y. J.; Liu, Y.; Wu, Q. Y.; Zhu, M. M.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020, 13, 2683–2690.

    Article  CAS  Google Scholar 

  54. Zhu, J. T.; Wang, H.; Ma, L.; Zou, G. F. Observation of ambipolar photoresponse from 2D MoS2/MXene heterostructure. Nano Res. 2021, 14, 3416–3422.

    Article  CAS  Google Scholar 

  55. Luo, Y. J.; Shen, P.; Li, X. C.; Guo, Y. L.; Chu, K. Sulfur-deficient Bi2S3-x synergistically coupling Ti3C2Tx-MXene for boosting electrocatalytic N2 reduction. Nano Res. 2022, 15, 3991–3999.

    Article  CAS  Google Scholar 

  56. Zhang, S. L.; Ying, H. J.; Huang, P. F.; Wang, J. L.; Zhang, Z.; Yang, T. T.; Han, W. Q. Rational design of pillared SnS/Ti3C2Tx MXene for superior lithium-ion storage. ACS Nano 2020, 14, 17665–17674.

    Article  CAS  Google Scholar 

  57. Yuan, Z. Y.; Wang, L. L.; Li, D. D.; Cao, J. M.; Han, W. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 2021, 15, 7439–7450.

    Article  CAS  Google Scholar 

  58. Ma, K.; Dong, Y. R.; Jiang, H.; Hu, Y. J.; Saha, P.; Li, C. Z. Densified MoS2/Ti3C2 films with balanced porosity for ultrahigh volumetric capacity sodium-ion battery. Chem. Eng. J. 2020, 413, 127479.

    Article  Google Scholar 

  59. Chang, Y. H.; Lin, C. T.; Chen, T. Y.; Hsu, C. L.; Lee, Y. H.; Zhang, W. J.; Wei, K. H.; Li, L. J. Highly efficient electrocatalytic hydrogen production by MoSx grown on graphene-protected 3D Ni foams. Adv. Mater. 2013, 25, 756–760.

    Article  CAS  Google Scholar 

  60. Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

    Article  CAS  Google Scholar 

  61. Deng, S. X.; Wang, B. Q.; Yuan, Y. F.; Li, X.; Sun, Q.; Doyle-Davis, K.; Banis, M. N.; Liang, J. N.; Zhao, Y.; Li, J. J. et al. Manipulation of an ionic and electronic conductive interface for highly-stable high-voltage cathodes. Nano Energy 2019, 65, 103988–103997.

    Article  CAS  Google Scholar 

  62. Chen, W. X.; Pei, J. J.; He, C. T.; Wan, J. W.; Ren, H. L.; Zhu, Y. Q.; Wang, Y.; Dong, J. C.; Tian, S. B.; Cheong, W. C. et al. Rational design of single molybdenum atoms anchored on N-Doped carbon for effective hydrogen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 16086–16090.

    Article  CAS  Google Scholar 

  63. Liu, Q.; Fang, Q.; Chu, W. S.; Wan, Y. Y.; Li, X. L.; Xu, W. Y.; Habib, M.; Tao, S.; Zhou, Y.; Liu, D. B. et al. Electron-Doped 1T-MoS2 via interface engineering for enhanced electrocatalytic hydrogen evolution. Chem. Mater. 2017, 29, 4738–4744.

    Article  CAS  Google Scholar 

  64. Xu, H.; Yi, J. J.; She, X. J.; Liu, Q.; Song, L.; Chen, S. M.; Yang, Y. C.; Song, Y. H.; Vajtai, R.; Lou, J. et al. 2D heterostructure comprised of metallic 1T-MoS2/Monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Appl. Catal. B:Environ. 2018, 220, 379–385.

    Article  CAS  Google Scholar 

  65. Ryaboshapka, D.; Piccolo, L.; Aouine, M.; Bargiela, P.; Briois, V.; Afanasiev, P. Ultradispersed (Co)Mo catalysts with high hydrodesulfurization activity. Appl. Catal. B:Environ. 2022, 302, 120831.

    Article  CAS  Google Scholar 

  66. Li, Q.; Huo, C. R.; Yi, K.; Zhou, L. L.; Su, L.; Hou, X. M. Preparation of flake hexagonal BN and its application in electrochemical detection of ascorbic acid, dopamine and uric acid. Sensors Actuat. B:Chem. 2018, 260, 346–356.

    Article  CAS  Google Scholar 

  67. Xi, X.; Wu, D. Q.; Ji, W.; Zhang, S. N.; Tang, W.; Su, Y. Z.; Guo, X. J.; Liu, R. L. Manipulating the sensitivity and selectivity of OECT-based biosensors via the surface engineering of carbon cloth gate electrodes. Adv. Funct. Mater. 2020, 30, 1905361.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872011, 51902011, and 22005013]. The authors thank the BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF), BL10B and BL12B in the National Synchrotron Radiation Laboratory (NSRL) for help with characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukun Gao, Wenxing Chen or Penggang Yin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P., You, T., Ren, Q. et al. Interface electronic engineering of molybdenum sulfide/MXene hybrids for highly efficient biomimetic sensors. Nano Res. 16, 1158–1164 (2023). https://doi.org/10.1007/s12274-022-5038-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5038-3

Keywords

Navigation