Skip to main content
Log in

Evaporative/radiative electrospun membrane for personal cooling

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Functional textiles that promote daily comfort and productivity must efficiently release body sweats and transmit radiative heat through sweat evaporation and mid-infrared radiation (MIR) (8–13 µm). However, most of the traditional clothing cannot provide simultaneous sweat evaporation and mid-infrared radiation transmission efficiently, leading to a poor design of personal cooling wearables. Herein, an evaporative/radiative integrated functional fibrous electrospun membrane is meticulously designed and controllably fabricated via facile electrospinning technology for personal cooling management. The developed membrane can be applied as a smart wearable with distinct personal thermal management applications. The promising temperature and humidity responsive vapor transmission of the membrane grants 1.2 times of evaporative cooling than that of traditional cotton. Besides, based on its high mid-infrared radiation transmission (53%) property in the range of 8–13 µm, the as-spun membrane provides extra cooling of 1.5 °C than that of cotton. Moreover, the building energy saving performances demonstrated that 47.1% annual building cooling can be achieved using the developed electrospun membrane. In general, the evaporative/radiative electrospun membrane creates a passive cooling microclimate for the human body, meeting the growing demand of wearable for personal cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu, S.; Yan, D.; Guo, S. Y.; Cui, Y.; Dong, B. A survey on energy consumption and energy usage behavior of households and residential building in urban China. Energy Build. 2017, 148, 366–378.

    Article  Google Scholar 

  2. Yan, D.; Hong, T. Z.; Li, C.; Zhang, Q.; An, J. J.; Hu, S. A thorough assessment of China’s standard for energy consumption of buildings. Energy Build. 2017, 143, 114–128.

    Article  Google Scholar 

  3. Kaplan, S.; Okur, A. Thermal comfort performance of sports garments with objective and subjective measurements. Indian J. Fibre Text. Res. 2012, 37, 46–54.

    CAS  Google Scholar 

  4. McLellan, T. M. The efficacy of an air-cooling vest to reduce thermal strain for light armour vehicle personnel. (Report No. DRDC-TORONTO-TR-2007-002). Defence R&D Canada, Toronto: Technical Report.

  5. Duffield, R.; Dawson, B.; Bishop, D.; Fitzsimons, M.; Lawrence, S. Effect of wearing an ice cooling jacket on repeat sprint performance in warm/humid conditions. Br. J. Sports Med. 2003, 37, 164–169.

    Article  CAS  Google Scholar 

  6. Iqbal, M. I.; Shuo, S.; Jiang, Y. Z.; Fei, B.; Xia, Q. Y.; Wang, X.; Hu, W. B.; Hu, J. L. Woolen respirators for thermal management. Adv. Mater. Technol. 2020, 6, 2100201.

    Article  Google Scholar 

  7. Zhu, S. S.; Hu, J. L. Multi-modal contractive forces of wools as actuator. Polymers 2020, 12, 1464.

    Article  CAS  Google Scholar 

  8. Hu, J. L.; Irfan Iqbal, M.; Sun, F. X. Wool can be cool: Water-actuating woolen knitwear for both hot and cold. Adv. Funct. Mater. 2020, 30, 2005033.

    Article  CAS  Google Scholar 

  9. Hu, J. L. Adaptive and Functional Polymers, Textiles and Their Applications; Imperial College Press: London, 2011.

    Book  Google Scholar 

  10. Han, Y. T.; Jiang, Y. Z.; Hu, J. L. Collagen incorporation into waterborne polyurethane improves breathability, mechanical property, and self-healing ability. Compos. A:Appl. Sci. Manuf. 2020, 133, 105854.

    Article  CAS  Google Scholar 

  11. Suvachittanont, S.; Duangchan, A.; Metheenukul, T. Innovative production of PCMs (phase change materials) preparation by vacuum impregnation: Thermal and physical properties. J. Chem. Chem. Eng. 2003, 7, 1074–1086.

    Google Scholar 

  12. Shi, S.; Si, Y. F.; Han, Y. T.; Wu, T.; Iqbal, M. I.; Fei, B.; Li, R. K. Y.; Hu, J. L.; Qu, J. P. Recent progress in protective membranes fabricated via electrospinning: Advanced materials, biomimetic structures, and functional applications. Adv. Mater. 2022, 34, 2107938.

    Article  CAS  Google Scholar 

  13. Liu, L.; Xu, W. H.; Ding, Y. C.; Agarwal, S.; Greiner, A.; Duan, G. G. A review of smart electrospun fibers toward textiles. Compos. Commun. 2020, 22, 100506.

    Article  Google Scholar 

  14. Wang, X.; Liu, X. H.; Li, Z. Y.; Zhang, H. W.; Yang, Z. W.; Zhou, H.; Fan, T. X. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling. Adv. Funct. Mater. 2020, 30, 1907562.

    Article  CAS  Google Scholar 

  15. Wu, J.; Wang, N.; Zhao, Y.; Jiang, L. Electrospinning of multilevel structured functional micro-/nanofibers and their applications. J. Mater. Chem. A 2003, 1, 7290–7305.

    Article  Google Scholar 

  16. Zander, N. E. Hierarchically structured electrospun fibers. Polymers 2003, 5, 19–44.

    Article  Google Scholar 

  17. Lou, L.; Chen, K. K.; Fan, J. T. Advanced materials for personal thermal and moisture management of health care workers wearing PPE. Mater. Sci. Eng. R Rep. 2020, 146, 100639.

    Article  Google Scholar 

  18. Pakdel, E.; Naebe, M.; Sun, L.; Wang, X. G. Advanced functional fibrous materials for enhanced thermoregulating performance. ACS Appl. Mater. Interfaces 2019, 11, 13039–13057.

    Article  CAS  Google Scholar 

  19. Kim, H.; McSherry, S.; Brown, B.; Lenert, A. Selectively enhancing solar scattering for direct radiative cooling through control of polymer nanofiber morphology. ACS Appl. Mater. Interfaces 2020, 12, 43553–43559.

    Article  CAS  Google Scholar 

  20. Park, B. K.; Um, I. C.; Han, S. M.; Han, S. E. Electrospinning to surpass white natural silk in sunlight rejection for radiative cooling. Adv. Photonics Res. 2020, 2, 2100008.

    Article  Google Scholar 

  21. Iqbal, M. I.; Lin, K. X.; Sun, F. X.; Chen, S. R.; Pan, A. Q.; Lee, H. H.; Kan, C. W.; Lin, C. S. K.; Tso, C. Y. Radiative cooling nanofabric for personal thermal management. ACS Appl. Mater. Interfaces 2022, 14, 23577–23587.

    Article  CAS  Google Scholar 

  22. Lu, Y.; Xiao, X. D.; Fu, J.; Huan, C. M; Qi, S.; Zhan, Y. J.; Zhu, Y. Q.; Xu, G. Novel smart textile with phase change materials encapsulated core—sheath structure fabricated by coaxial electrospinning. Chem. Eng. J. 2019, 355, 532–539.

    Article  CAS  Google Scholar 

  23. Cai, L. L.; Song, A. Y.; Li, W.; Hsu, P. C.; Lin, D. C.; Catrysse, P. B.; Liu, Y. Y.; Peng, Y. C.; Chen, J.; Wang, H. X. et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv. Mater. 2018, 30, 1802152.

    Article  Google Scholar 

  24. Hsu, P. C.; Song, A. Y.; Catrysse, P. B.; Liu, C.; Peng, Y. C.; Xie, J.; Fan, S. H.; Cui, Y. Radiative human body cooling by nanoporous polyethylene textile. Science 2016, 353, 1019–1023.

    Article  CAS  Google Scholar 

  25. Song, Y. N.; Ma, R. J.; Xu, L.; Huang, H. D.; Yan, D. X.; Xu, J. Z.; Zhong, G. J.; Lei, J.; Li, Z. M. Wearable polyethylene/polyamide composite fabric for passive human body cooling. ACS Appl. Mater. Interfaces 2018, 10, 41637–41644.

    Article  CAS  Google Scholar 

  26. Tong, J. K.; Huang, X. P.; Boriskina, S. V.; Loomis, J.; Xu, Y. F.; Chen, G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2015, 2, 769–778.

    Article  CAS  Google Scholar 

  27. Peng, Y. C.; Chen, J.; Song, A. Y.; Catrysse, P. B.; Hsu, P. C.; Cai, L. L.; Liu, B. F.; Zhu, Y. Y.; Zhou, G. M.; Wu, D. S. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 2018, 1, 105–112.

    Article  Google Scholar 

  28. Cai, L. L.; Peng, Y. C.; Xu, J. W.; Zhou, C. Y.; Zhou, C. X.; Wu, P. L.; Lin, D. C.; Fan, S. H.; Cui, Y. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 2019, 3, 1478–1486.

    Article  CAS  Google Scholar 

  29. Liu, R.; Wang, X. W.; Yu, J. R.; Wang, Y.; Zhu, J.; Hu, Z. M. A novel approach to design nanoporous polyethylene/polyester composite fabric via TIPS for human body cooling. Macromol. Mater. Eng. 2018, 303, 1700456.

    Article  Google Scholar 

  30. Yan, W.; Dong, C. Q.; Xiang, Y. Z.; Jiang, S.; Leber, A.; Loke, G.; Xu, W. X.; Hou, C.; Zhou, S. F.; Chen, M. et al. Thermally drawn advanced functional fibers: New frontier of flexible electronics. Mater. Today 2020, 35, 168–194.

    Article  CAS  Google Scholar 

  31. Li, X.; Lin, J. Y.; Bian, F. G.; Zeng, Y. C. Improving waterproof/breathable performance of electrospun poly (vinylidene fluoride) fibrous membranes by thermos-pressing. J. Polym. Sci. B:Polym. Phys. 2018, 56, 36–45.

    Article  CAS  Google Scholar 

  32. Song, Y. N.; Lei, M. Q.; Deng, L. F.; Lei, J.; Li, Z. M. Hybrid metamaterial textiles for passive personal cooling indoors and outdoors. ACS Appl. Mater. Interfaces 2020, 2, 4379–4386.

    CAS  Google Scholar 

  33. Zhang, X. S.; Yang, W. F.; Shao, Z. W.; Li, Y. G.; Su, Y.; Zhang, Q. H.; Hou, C. Y.; Wang, H. Z. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 2022, 16, 2188–2197.

    Article  CAS  Google Scholar 

  34. Shi, S.; Han, Y. T.; Hu, J. L. Robust waterproof and self-adaptive breathable membrane with heat retention property for intelligent protective cloth. Prog. Org. Coat. 2019, 137, 105303.

    Article  CAS  Google Scholar 

  35. Jeong, H. M.; Ahn, B. K.; Kim, B. K. Temperature sensitive water vapour permeability and shape memory effect of polyurethane with crystalline reversible phase and hydrophilic segments. Polym. Int. 2000, 49, 1714–1721.

    Article  CAS  Google Scholar 

  36. TRNSYS_18 TRNSYS-Official Website [Online]. The University of Wisconsin Madison USA, 2018. http://sel.we.wisc.edu/trnsys/features/features.html (accessed Aug 4, 2022).

  37. Kumar, G. M. S.; Cao, S. L. Simulation-based techno-economic feasibility study on sector coupled net-zero/positive energy metro railway system in Hong Kong. Energy Convers. Manage. 2021, 248, 114786.

    Article  Google Scholar 

  38. Saffari, M.; de Gracia, A.; Ushak, S.; Cabeza, L. F. Economic impact of integrating PCM as passive system in buildings using Fanger comfort model. Energy Build. 2016, 112, 159–172.

    Article  Google Scholar 

  39. TESS Mathematical Reference of the standard types of the TRNSYS document package [Online]. USA, 2018. http://web.mit.edu/parmstr/Public/TRNSYS/04-MathematicalReference.pdf (accessed Aug 4, 2022).

  40. EMSD. Performance-based building energy code [Online]. 2005. https://www.emsd.gov.hk/filemanager/en/content_724/pb-bec.pdf. (accessed Aug 4, 2022)

  41. HKGBC. Hong Kong Green Office Guide [Online]. Hong Kong Green Building Council, 2016. https://www.hkgbc.org.hk/eng/engagement/guidebooks/green-office-guide/index.jsp (accessed Aug 4, 2022).

  42. Meteotest_AG. Meteonorm software [Online]. 2020. https://meteonorm.com/en/ (accessed Aug 4, 2022).

  43. Gilani, S. I. U. H.; Khan, M. H.; Ali, M. Revisiting Fanger’s thermal comfort model using mean blood pressure as a bio-marker: An experimental investigation. Appl. Therm. Eng. 2016, 109, 35–43.

    Article  Google Scholar 

  44. Alahmer, A.; Omar, M.; Mayyas, A. R.; Qattawi, A. Analysis of vehicular cabins’ thermal sensation and comfort state, under relative humidity and temperature control, using Berkeley and Fanger models. Build. Environ. 2012, 48, 146–163.

    Article  Google Scholar 

  45. Krawczyk, N.; Kapjor, A.; Orman, Ł. J. Verification of the Fanger model in real conditions. MATEC Web Conf. 2020, 328, 01001.

    Article  CAS  Google Scholar 

  46. Gilani, S. I. U. H.; Khan, M. H.; Pao, W. Thermal comfort analysis of PMV model prediction in air conditioned and naturally ventilated buildings. Energy Procedia 2015, 75, 1373–1379.

    Article  Google Scholar 

  47. D’Amelia, R. P.; Gentile, S.; Nirode, W. F.; Huang, L. Quantitative analysis of copolymers and blends of polyvinyl acetate (PVAc) using Fourier transform infrared spectroscopy (FTIR) and elemental analysis (EA). World J. Chem. Educ. 2016, 4, 25–31.

    Google Scholar 

  48. Tartarini, F.; Schiavon, S.; Cheung, T.; Hoyt, T. CBE thermal comfort tool: Online tool for thermal comfort calculations and visualizations. Software X 2020, 12, 100563.

    Google Scholar 

  49. ASHRAE. ANSI/ASHRAE Standard 55–2004 Thermal environmental conditions for human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, USA, 2004. http://www.ditar.cl/archivos/Normas_ASHRAE/T0080ASHRAE-55-2004-ThermalEnviromCondiHO.pdf (accessed Aug 4, 2022)

    Google Scholar 

  50. Zhu, K. K.; Shi, S.; Cao, Y.; Lu, A.; Hu, J. L.; Zhang, L. N. Robust chitin films with good biocompatibility and breathable properties. Carbohydr. Polym. 2019, 212, 361–367.

    Article  CAS  Google Scholar 

  51. Xiao, R. C.; Hou, C. Y.; Yang, W. F.; Su, Y.; Li, Y. G.; Zhang, Q. H.; Gao, P.; Wang, H. Z. Infrared-radiation-enhanced nanofiber membrane for sky radiative cooling of the human body. ACS Appl. Mater. Interfaces 2019, 11, 44673–44681.

    Article  CAS  Google Scholar 

  52. Zhao, H. R.; Shi, S.; Ding, J. H.; Zhou, M.; Liu, P. L.; Geng, L. H.; Iqbal M. I.; Yu, H. B. Sequentially bridged graphene sheets for high-performance anticorrosion. Adv. Mater. Interfaces 2021, 8, 2100452.

    Article  CAS  Google Scholar 

  53. Iqbal, M. I.; Sun, F. X.; Fei, B.; Xia, Q. Y.; Wang, X.; Hu, J. L. Knit architecture for water-actuating woolen knitwear and its personalized thermal management. ACS Appl. Mater. Interfaces 2021, 13, 6298–6308.

    Article  CAS  Google Scholar 

  54. Hardy, J. D.; Soderstrom, G. F. Heat loss from the nude body and peripheral blood flow at temperatures of 22 °C. to 3 5°C. J. Nutr. 1938, 16, 493–510.

    Article  Google Scholar 

  55. Su, X. W.; Wang, Z. J.; Zhou, F. Z.; Duanmu, L.; Zhai, Y. C.; Lian, Z. W.; Cao, B.; Zhang, Y. F.; Zhou, X.; Xie, J. C. Comfortable clothing model of occupants and thermal adaption to cold climates in China. Build. Environ. 2022, 207, 108499.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Contract Research (Development of Breathable Fabrics with Nano-Electrospun Membrane, CityU ref.: 9231419), the National Natural Science Foundation of China (Study of Multi-Responsive Shape Memory Polyurethane Nanocomposites Inspired by Natural Fibers, Grant No. 51673162), and Start-up Grant of CityU (Laboratory of Wearable Materials for Healthcare, Grant No. 9380116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlian Hu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, M.I., Shi, S., Kumar, G.M.S. et al. Evaporative/radiative electrospun membrane for personal cooling. Nano Res. 16, 2563–2571 (2023). https://doi.org/10.1007/s12274-022-4987-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4987-x

Keywords

Navigation