Skip to main content
Log in

3D printing CO2-activated carbon nanotubes host to promote sulfur loading for high areal capacity lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur batteries (LSBs) have emerged as a promising high energy density system in miniaturized energy storage devices. However, serious issues rooted in large volume change (80%), poor intrinsic conductivity, “shuttle effect” of S cathode, and limited mass loading of traditional electrode still make it a big challenge to achieve high energy density LSBs in a limited footprint. Herein, an innovative carbon dioxide (CO2) assisted three-dimensional (3D) printing strategy is proposed to fabricate three-dimensional lattice structured CO2 activated single-walled carbon nanotubes/S composite thick electrode (3DP S@CNTs-CO2) for high areal capacity LSBs. The 3D lattice structure formed by interwoven CNTs and printed regular macropores can not only act as fast electron transfer networks, ensuring good electronic conductivity of thick electrode, but is beneficial to electrolyte infiltration, effectively boosting ion diffusion kinetics even under a high-mass loading. In addition, the subsequent high-temperature CO2 in-situ etching can induce abundant nanopores on the wall of CNTs, which significantly promotes the sulfur loading as well as its full utilization as a result of shortened ion diffusion paths. Owing to these merits, the 3DP S@CNTs-CO2 electrode delivers an impressive mass loading of 10 mg·cm−2. More importantly, a desired attribute of linearly scale up in areal capacitance with increased layers is observed, up to an outstanding value of 5.74 mAh·cm−2, outperforming most reported LSBs that adopt strategies that physically inhibit polysulfides. This work provides a thrilling drive that stimulates the application of LSBs in new generation miniaturized electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv, J.; Chen, J.; Lee, P. S. Sustainable wearable energy storage devices self-charged by human-body bioenergy. SusMat 2021, 1, 285–302.

    Article  CAS  Google Scholar 

  2. Dong, S. H.; Liu, H. J.; Hu, Y. Z.; Chong, S. K. Cathode materials for rechargeable lithium-sulfur batteries: Current progress and future prospects. ChemElectroChem 2022, 9, e202101564.

    Article  CAS  Google Scholar 

  3. Li, H. T.; Li, Y. G.; Zhang, L. Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries. SusMat 2022, 2, 34–64.

    Article  CAS  Google Scholar 

  4. Manthiram, A.; Fu, Y. Z.; Su, Y. S. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013, 46, 1125–1134.

    Article  CAS  Google Scholar 

  5. Chen, C. L.; Jiang, J. M.; He, W. J.; Lei, W.; Hao, Q. L.; Zhang, X. G. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv. Funct. Mater. 2020, 30, 1909469.

    Article  CAS  Google Scholar 

  6. Cheng, X. B.; Liu, H.; Yuan, H.; Peng, H. J.; Tang, C.; Huang, J. Q.; Zhang, Q. A perspective on sustainable energy materials for lithium batteries. SusMat 2021, 1, 38–50.

    Article  CAS  Google Scholar 

  7. Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

    Article  CAS  Google Scholar 

  8. Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

    Article  Google Scholar 

  9. Shi, Z. X.; Sun, Z. T.; Cai, J. S.; Fan, Z. D.; Jin, J.; Wang, M. L.; Sun, J. Y. Boosting dual-directional polysulfide electrocatalysis via bimetallic alloying for printable Li-S batteries. Adv. Funct. Mater. 2021, 31, 2006798.

    Article  CAS  Google Scholar 

  10. Wei, C. H.; Tian, M.; Fan, Z. D.; Yu, L. H.; Song, Y. Z.; Yang, X. Z.; Shi, Z. X.; Wang, M. L.; Yang, R. Z.; Sun, J. Y. Concurrent realization of dendrite-free anode and high-loading cathode via 3D printed N-Ti3C2 MXene framework toward advanced Li-S full batteries. Energy Storage Mater. 2021, 41, 141–151.

    Article  Google Scholar 

  11. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  12. Su, Y. S.; Manthiram, A. Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun. 2012, 3, 1166.

    Article  Google Scholar 

  13. Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res. 2018, 11, 1238–1246.

    Article  CAS  Google Scholar 

  14. Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

    Article  CAS  Google Scholar 

  15. Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew. Chem., Int. Ed. 2011, 50, 5904–5908.

    Article  CAS  Google Scholar 

  16. He, B.; Li, W. C.; Chen, Z. Y.; Shi, L.; Zhang, Y.; Xia, J. L.; Lu, A. H. Multilevel structured carbon film as cathode host for Li-S batteries with superhigh-areal-capacity. Nano Res. 2021, 14, 1273–1279.

    Article  CAS  Google Scholar 

  17. Wang, J. C.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 2012, 22, 23710–23725.

    Article  CAS  Google Scholar 

  18. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Robinson, J. T.; Li, Y. G.; Jackson, A.; Cui, Y.; Dai, H. J. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011, 11, 2644–2647.

    Article  CAS  Google Scholar 

  19. Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

    Article  CAS  Google Scholar 

  20. Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Lithium-sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200.

    Article  CAS  Google Scholar 

  21. Wang, L.; Liu, S. K., Hu, J.; Zhang, X. N.; Li, X.; Zhang, G. H.; Li, Y. J.; Zheng, C. M.; Hong, X. B.; Duan, H. G. Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells. Nano Res. 2021, 14, 1355–1363.

    Article  CAS  Google Scholar 

  22. Fujimori, T.; Morelos-Gómez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Hong, S. Y. et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 2013, 4, 2162.

    Article  Google Scholar 

  23. Zhou, G. M.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L. C.; Liu, C.; Lu, G. Q. M.; Gentle, I. R.; Cheng, H. M. A flexible nanostructured sulphur-carbon nanotube cathode with high rate performance for Li-S batteries. Energy Environ. Sci. 2012, 5, 8901–8906.

    Article  CAS  Google Scholar 

  24. Zhang, C. H.; Li, Y. J.; Kang, W. B.; Liu, X. G.; Wang, Q. Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat 2021, 1, 127–147.

    Article  CAS  Google Scholar 

  25. Kang, W. B.; Zeng, L.; Ling, S. W.; Zhang, C. H. 3D printed supercapacitors toward trinity excellence in kinetics, energy density, and flexibility. Adv. Energy Mater. 2021, 11, 2100020.

    Article  CAS  Google Scholar 

  26. Xue, L. X.; Zeng, L.; Kang, W. B.; Chen, H. Y.; Hu, Y.; Li, Y. Y.; Chen, W.; Lei, T. Y.; Yan, Y. C.; Yang, C. T. et al. 3D printed Li-S batteries with in situ decorated Li2S/C cathode: Interface engineering induced loading-insensitivity for scaled areal performance. Adv. Energy Mater. 2021, 11, 2100420.

    Article  CAS  Google Scholar 

  27. Chen, Y.; Liu, C.; Li, F.; Cheng, H. M. Pore structures of multi-walled carbon nanotubes activated by air, CO2 and KOH. J. Porous Mater. 2006, 13, 141–146.

    Article  CAS  Google Scholar 

  28. Lee, S. Y.; Park, S. J. Influence of CO2 activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes. J. Solid State Chem. 2010, 183, 2951–2956.

    Article  CAS  Google Scholar 

  29. Moon, S.; Jung, Y. H.; Jung, W. K.; Jung, D. S.; Choi, J. W.; Kim, D. K. Batteries: Encapsulated monoclinic sulfur for stable cycling of Li-S rechargeable batteries. Adv. Mater. 2013, 25, 6546.

    Article  CAS  Google Scholar 

  30. Kang, W. M.; Fan, L. L.; Deng, N. P.; Zhao, H. J.; Li, Q. X.; Naebe, M.; Yan, J.; Cheng, B. W. Sulfur-embedded porous carbon nanofiber composites for high stability lithium-sulfur batteries. Chem. Eng. J. 2018, 333, 185–190.

    Article  CAS  Google Scholar 

  31. Su, Y. S.; Fu, Y. Z.; Manthiram, A. Self-weaving sulfur-carbon composite cathodes for high rate lithium-sulfur batteries. Phys. Chem. Chem. Phys. 2012, 14, 14495–14499.

    Article  CAS  Google Scholar 

  32. Guo, J. C.; Xu, Y. H.; Wang, C. S. Sulfur-impregnated disordered carbon nanotubes cathode for lithium-sulfur batteries. Nano Lett. 2011, 11, 4288–4294.

    Article  CAS  Google Scholar 

  33. Shen, K.; Mei, H. L.; Li, B.; Ding, J. W.; Yang, S. B. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.

    Article  Google Scholar 

  34. Milroy, C. A.; Jang, S.; Fujimori, T.; Dodabalapur, A.; Manthiram, A. Inkjet-printed lithium-sulfur microcathodes for all-printed, integrated nanomanufacturing. Small 2017, 13, 1603786.

    Article  Google Scholar 

  35. Wang, J.; Cheng, S.; Li, W. F.; Zhang, S.; Li, H. F.; Zheng, Z. Z.; Li, F. J.; Shi, L. Y.; Lin, H. Z.; Zhang, Y. G. Simultaneous optimization of surface chemistry and pore morphology of 3D graphene-sulfur cathode via multi-ion modulation. J. Power Sources 2016, 321, 193–200.

    Article  CAS  Google Scholar 

  36. Gao, X. J.; Yang, X. F.; Sun, Q.; Luo, J.; Liang, J. N.; Li, W. H.; Wang, J. W.; Wang, S. Z.; Li, M. S.; Li, R. Y. et al. Converting a thick electrode into vertically aligned “thin electrodes” by 3D-printing for designing thickness independent Li-S cathode. Energy Storage Mater. 2020, 24, 682–688.

    Article  Google Scholar 

  37. He, H. N.; Huang, D.; Tang, Y. G.; Wang, Q.; Ji, X. B.; Wang, H. Y.; Guo, Z. P. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy 2019, 57, 728–736.

    Article  CAS  Google Scholar 

  38. Chung, S. H.; Chang, C. H.; Manthiram, A. Robust, ultra-tough flexible cathodes for high-energy Li-S batteries. Small 2016, 12, 939–950.

    Article  CAS  Google Scholar 

  39. Chung, S. H.; Manthiram, A. Carbonized eggshell membrane as a natural polysulfide reservoir for highly reversible Li-S batteries. Adv. Mater. 2011, 26, 1360–1365.

    Article  Google Scholar 

  40. Lv, D. P.; Zheng, J. M.; Li, Q. Y.; Xie, X.; Ferrara, S.; Nie, Z. M.; Mehdi, L. B.; Browning, N. D.; Zhang, J. G.; Graff, G. L. et al. High energy density lithium-sulfur batteries: Challenges of thick sulfur cathodes. Adv. Energy Mater. 2015, 5, 1402290.

    Article  Google Scholar 

  41. Peng, H. J.; Xu, W. T.; Zhu, L.; Wang, D. W.; Huang, J. Q.; Cheng, X. B.; Yuan, Z.; Wei, F.; Zhang, Q. 3D carbonaceous current collectors: The origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries. Adv. Funct. Mater. 2016, 26, 6351–6358.

    Article  CAS  Google Scholar 

  42. Jin, K. K.; Zhou, X. F.; Zhang, L. Z.; Xin, X.; Wang, G. H.; Liu, Z. P. Sulfur/carbon nanotube composite film as a flexible cathode for lithium-sulfur batteries. J. Phys. Chem. C. 2013, 117, 21112–21119.

    Article  CAS  Google Scholar 

  43. Xu, T.; Song, J. X.; Gordin, M. L.; Sohn, H.; Yu, Z. X.; Chen, S. R.; Wang, D. H. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes. ACS Appl. Mater. Interfaces 2013, 5, 11355–11362.

    Article  CAS  Google Scholar 

  44. Zhou, G. M.; Yin, L. C.; Wang, D. W.; Li, L.; Pei, S. F.; Gentle, I. R.; Li, F.; Cheng, H. M. Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries. ACS Nano 2013, 7, 5367–5375.

    Article  CAS  Google Scholar 

  45. Lu, S. T.; Chen, Y.; Wu, X. H.; Wang, Z. D.; Li, Y. Three-dimensional sulfur/graphene multifunctional hybrid sponges for lithium-sulfur batteries with large areal mass loading. Sci. Rep. 2014, 4, 4629.

    Article  Google Scholar 

  46. Thieme, S.; Brückner, J.; Bauer, I.; Oschatz, M.; Borchardt, L.; Althues, H.; Kaskel, S. High capacity micro-mesoporous carbon-sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure. J. Mater. Chem. A 2013, 1, 9225–9234.

    Article  CAS  Google Scholar 

  47. Ji, X. L.; Evers, S.; Black, R.; Nazar, L. F. Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. Nat. Commun. 2011, 2, 325.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51933007 and 51673123), the National Key Research and development Program of China (No. 2017YFE0111500), and the Program for Featured Directions of Engineering Multidisciplines of Sichuan University (No. 2020SCUNG203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaolong Li or Chuhong Zhang.

Electronic Supplementary Material

12274_2022_4741_MOESM1_ESM.pdf

3D printing CO2-activated carbon nanotubes host to promote sulfur loading for high areal capacity lithium-sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, J., Cao, W. et al. 3D printing CO2-activated carbon nanotubes host to promote sulfur loading for high areal capacity lithium-sulfur batteries. Nano Res. 16, 8281–8289 (2023). https://doi.org/10.1007/s12274-022-4741-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4741-4

Keywords

Navigation