Skip to main content
Log in

Crystalline—amorphous interfaces of NiO-CrOx electrocatalysts for boosting the urea oxidation reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The overall energy efficiency of electrochemical systems is severely hindered by the traditional anodic oxygen evolution reaction (OER). Utilizing urea oxidation reaction (UOR) with lower thermodynamic potential to replace OER provides a promising strategy to enhance the energy efficiency. Amorphous and heterojunctions electrocatalysts have been aroused extensive studies owing to their unique physicochemical properties and outperformed activity. Herein, we report a simple method to construct a novel crystalline—amorphous NiO-CrOx heterojunction grown on Ni foam for UOR electrocatalyst. The NiO-CrOx electrocatalyst displays excellent UOR performance with an ultralow working potential of 1.32 V at 10 mA·cm−2 and ultra-long stability about 5 days even at 100 mA·cm−2. In-situ Raman analysis and temperature-programmed desorption (TPD) measurement verify that the presence of the amorphous CrOx phase can boost the reconstruction from NiO to active NiOOH species and enhance adsorption ability of urea molecule. Besides, the unique crystalline—amorphous interfaces are also benefit to improving the UOR performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suryanto, B. H. R.; Du, H. L.; Wang, D. B.; Chen, J.; Simonov, A. N.; MacFarlane, D. R. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2019, 2, 290–296.

    Article  CAS  Google Scholar 

  2. Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2020, 5, 564–579.

    Article  Google Scholar 

  3. Lin, F.; Dong, Z. H.; Yao, Y. H.; Yang, L.; Fang, F.; Jiao, L. F. Electrocatalytic hydrogen evolution of ultrathin Co-Mo5N6 heterojunction with interfacial electron redistribution. Adv. Energy Mater. 2020, 10, 2002176.

    Article  CAS  Google Scholar 

  4. Wang, T. Z.; Cao, X. J.; Qin, H. Y.; Chen, X. C.; Li, J. H.; Jiao, L. F. Integrating energy-saving hydrogen production with methanol electrooxidation over Mo modified Co4N nanoarrays. J. Mater. Chem. A 2020, 9, 21094–21100.

    Article  Google Scholar 

  5. Su, H.; Soldatov, M. A.; Roldugin, V.; Liu, Q. H. Platinum singleatom catalyst with self-adjustable valence state for large-current-density acidic water oxidation. eScience 2022, 2, 102–109.

    Article  Google Scholar 

  6. Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Tian, C. G.; Fu, H. G. Electronic structure modulation of non-noble-metal-based catalysts for biomass electrooxidation reactions. Small Structures 2021, 2, 2100095.

    Article  CAS  Google Scholar 

  7. Meng, F. X.; Dai, C. C.; Liu, Z.; Luo, S. Z.; Ge, J. J.; Duan, Y.; Chen, G.; Wei, C.; Chen, R. R.; Wang, J. R. et al. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides. eScience 2022, 2, 87–94.

    Article  Google Scholar 

  8. Wang, C.; Lu, H. L.; Mao, Z. Y.; Yan, C. L.; Shen, G. Z.; Wang, X. F. Bimetal Schottky heterojunction boosting energy-saving hydrogen production from alkaline water via urea electrocatalysis. Adv. Funct. Mater. 2020, 30, 2000556.

    Article  CAS  Google Scholar 

  9. Zhu, B. J.; Liang, Z. B.; Zou, R. Q. Designing advanced catalysts for energy conversion based on urea oxidation reaction. Small 2020, 16, 1906133.

    Article  CAS  Google Scholar 

  10. Wang, T. Z.; Cao, X. J.; Jiao, L. F. Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production. eScience 2020, 1, 69–74.

    Article  Google Scholar 

  11. Zhu, X. J.; Dou, X. Y.; Dai, J.; An, X. D.; Guo, Y. Q.; Zhang, L. D.; Tao, S.; Zhao, J. Y.; Chu, W. S.; Zeng, X. C. et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells. Angew. Chem., Int. Ed. 2006, 55, 12465–12469.

    Article  Google Scholar 

  12. Sun, H. C.; Zhang, W.; Li, J. G.; Li, Z. S.; Ao, X.; Xue, K. H.; Ostrikov, K. K.; Tang, J.; Wang, C. D. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl. Catal. B Environ. 2020, 284, 119740.

    Article  Google Scholar 

  13. Chen, W.; Xu, L. T.; Zhu, X. R.; Huang, Y. C.; Zhou, W.; Wang, D. D.; Zhou, Y. Y.; Du, S. Q.; Li, Q. L.; Xie, C. et al. Unveiling the electrooxidation of urea: Intramolecular coupling of the N-N bond. Angew. Chem., Int. Ed. 2020, 60, 7297–7307.

    Article  Google Scholar 

  14. Liu, X.; Meng, J. S.; Zhu, J. X.; Huang, M.; Wen, B.; Guo, R. T.; Mai, L. Q. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2020, 33, 2007344.

    Article  Google Scholar 

  15. Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

    Article  CAS  Google Scholar 

  16. Tong, Y.; Chen, P. Z.; Zhang, M. X.; Zhou, T. P.; Zhang, L. D.; Chu, W. S.; Wu, C. Z.; Xie, Y. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation. ACS Catal. 2008, 8, 1–7.

    Article  Google Scholar 

  17. Guo, C. Y.; Shi, Y. M.; Lu, S. Y.; Yu, Y. F.; Zhang, B. Amorphous nanomaterials in electrocatalytic water splitting. Chin. J. Catal. 2020, 42, 1287–1296.

    Article  Google Scholar 

  18. Guan, D. Q.; Zhou, W.; Shao, Z. P. Rational design of superior electrocatalysts for water oxidation: Crystalline or amorphous structure? Small Sci. 2020, 1, 2100030.

    Article  Google Scholar 

  19. Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

    Article  CAS  Google Scholar 

  20. Shen, S. J.; Wang, Z. P.; Lin, Z. P.; Song, K.; Zhang, Q. H.; Meng, F. Q.; Gu, L.; Zhong, W. W. Crystalline-amorphous interfaces coupling of CoSe2/CoP with optimized d-band center and boosted electrocatalytic hydrogen evolution. Adv. Mater. 2022, 34, 2110631.

    Article  CAS  Google Scholar 

  21. Liu, D. C.; Cao, L. M.; Luo, Z. M.; Zhong, D. C.; Tan, J. B.; Lu, T. B. An in situ generated amorphous CoFePi and crystalline Ni(PO3)2 heterojunction as an efficient electrocatalyst for oxygen evolution. J. Mater. Chem. A 2008, 6, 24920–24927.

    Article  Google Scholar 

  22. Yang, M. Y.; Zhao, M. X.; Yuan, J.; Luo, J. X.; Zhang, J. J.; Lu, Z. G.; Chen, D. Z.; Fu, X. Z.; Wang, L.; Liu, C. Oxygen vacancies and interface engineering on amorphous/crystalline CrOx-Ni3N heterostructures toward high-durability and kinetically accelerated water splitting. Small 2022, 18, 2106554.

    Article  CAS  Google Scholar 

  23. Yang, L.; Huang, L. T.; Yao, Y. H.; Jiao, L. F. In-situ construction of lattice-matching NiP2/NiSe2 heterointerfaces with electron redistribution for boosting overall water splitting. Appl. Catal. B Environ. 2021, 282, 119584.

    Article  CAS  Google Scholar 

  24. Zhang, S. L.; Guan, B. Y.; Lu, X. F.; Xi, S. B.; Du, Y. H.; Lou, X. W. D. Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 2020, 32, 2002235.

    Article  CAS  Google Scholar 

  25. Wang, A. Y.; Lin, B.; Zhang, H. L.; Engelhard, M. H.; Guo, Y. L.; Lu, G. Z.; Peden, C. H. F.; Gao, F. Ambient temperature NO oxidation over Cr-based amorphous mixed oxide catalysts: Effects from the second oxide components. Catal. Sci. Technol. 2017, 7, 2362–2370.

    Article  CAS  Google Scholar 

  26. Maslar, J. E.; Hurst, W. S.; Bowers, W. J.; Hendricks, J. H.; Aquino, M. I.; Levin, I. In situ Raman spectroscopic investigation of chromium surfaces under hydrothermal conditions. Appl. Surf. Sci. 2001, 180, 102–118.

    Article  CAS  Google Scholar 

  27. Han, H.; Choi, H.; Mhin, S.; Hong, Y. R.; Kim, K. M.; Kwon, J.; Ali, G.; Chung, K. Y.; Je, M.; Umh, H. N. et al. Advantageous crystalline-amorphous phase boundary for enhanced electrochemical water oxidation. Energy Environ. Sci. 2019, 12, 2443–2454.

    Article  CAS  Google Scholar 

  28. Jiang, J.; Hu, Y. L.; He, X. R.; Li, Z. P.; Li, F.; Chen, X.; Niu, Y.; Song, J.; Huang, P.; Tian, G. et al. An amorphous-crystalline nanosheet arrays structure for ultrahigh electrochemical performance supercapattery. Small 2021, 17, 2102565.

    Article  CAS  Google Scholar 

  29. Yang, F. N.; Luo, Y. T.; Yu, Q. M.; Zhang, Z. Y.; Zhang, S.; Liu, Z. B.; Ren, W. C.; Cheng, H. M.; Li, J.; Liu, B. L. A durable and efficient electrocatalyst for saline water splitting with current density exceeding 2, 000 mA·cm−2. Adv. Funct. Mater. 2021, 37, 2010367.

    Article  Google Scholar 

  30. Zhang, L. J.; Jang, H.; Liu, H. H.; Kim, M. G.; Yang, D. J.; Liu, S. G.; Liu, X. E.; Cho, J. Sodium-decorated amorphous/crystalline RuO2 with rich oxygen vacancies: A robust pH-universal oxygen evolution electrocatalyst. Angew. Chem., Int. Ed. 2021, 60, 18821–18829.

    Article  CAS  Google Scholar 

  31. Lin, C.; Gao, Z. F.; Zhang, F.; Yang, J. H.; Liu, B.; Jin, J. In situ growth of single-layered α-Ni(OH)2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea. J. Mater. Chem. A 2018, 6, 13867–13873.

    Article  CAS  Google Scholar 

  32. Wang, L. P.; Zhu, Y. J.; Wen, Y. Z.; Li, S. Y.; Cui, C. Y.; Ni, F. L.; Liu, Y. X.; Lin, H. P.; Li, Y. Y.; Peng, H. S. et al. Regulating the local charge distribution of Ni active sites for the urea oxidation reaction. Angew. Chem., Int. Ed. 2021, 60, 10577–10582.

    Article  CAS  Google Scholar 

  33. Luo, J. M.; Tian, X. L.; Zeng, J. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 2016, 6, 6165–6174.

    Article  CAS  Google Scholar 

  34. Zhang, S. H.; Wu, M. F.; Tang, T. T.; Xing, Q. J.; Peng, C. Q.; Li, F.; Liu, H.; Luo, X. B.; Zou, J. P.; Min, X. B. et al. Mechanism investigation of anoxic Cr(VI) removal by Nano zero-valent iron based on XPS analysis in time scale. Chem. Eng. J. 2018, 335, 945–953.

    Article  CAS  Google Scholar 

  35. Liu, X. H.; Wu, J. Coupling interface constructions of NiO-Cr2O3 heterostructures for efficient electrocatalytic oxygen evolution. Electrochim. Acta 2019, 320, 134577.

    Article  CAS  Google Scholar 

  36. Yang, H. Y.; Dai, G. L.; Chen, Z. L.; Wu, J.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Pseudo-periodically coupling Ni-O lattice with Ce-O lattice in ultrathin heteronanowire arrays for efficient water oxidation. Small 2021, 17, 2101727.

    Article  CAS  Google Scholar 

  37. Chen, G.; Hu, Z. W.; Zhu, Y. P.; Gu, B. B.; Zhong, Y. J.; Lin, H. J.; Chen, C. T.; Zhou, W.; Shao, Z. P. A universal strategy to design superior water-splitting electrocatalysts based on fast in situ reconstruction of amorphous nanofilm precursors. Adv. Mater. 2018, 30, 1804333.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52025013 and 22121005), the 111 Project (No. B12015), Haihe Laboratory of Sustainable Chemical Transformations, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lihua Zhao or Lifang Jiao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, X., Wang, T., Qin, H. et al. Crystalline—amorphous interfaces of NiO-CrOx electrocatalysts for boosting the urea oxidation reaction. Nano Res. 16, 3665–3671 (2023). https://doi.org/10.1007/s12274-022-4635-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4635-5

Keywords

Navigation