Skip to main content
Log in

Rod-like mesoporous silica nanoparticles facilitate oral drug delivery via enhanced permeation and retention effect in mucus

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The physiochemical characteristics of nanoparticles affect their in vitro and in vivo performance significantly, such as diameter, surface chemistry, and shape. This paper disclosed the effect of enhanced permeation and retention (EPR) in mucus caused by nanoparticle shape on improving oral absorption. The spherical and rod-like mesoporous silica nanoparticles (MSNs) were used to evaluate shape effect of EPR in mucus. Fenofibrate was loaded in MSNs as model drug. The in vitro release of fenofibrate from MSNs was dependent on nanoparticle shapes, but faster than that of raw drug. The drug release slowed down with the increase of aspect ratio due to longer channels in rod-like MSNs with higher aspect ratio. However, in vivo study showed that the oral bioavailability of fenofibrate was the highest after loading in rod-like MSNs with aspect ratio of 5. The in vitro study of mechanisms revealed that superior mucus diffusion ability of rod-like MSNs with aspect ratio of 5 was conductive to higher bioavailability. Meanwhile, more rod-like MSNs with higher aspect ratio were able to diffuse into mucus and reside there compared to spherical and short counterparts, which demonstrated higher aspect ratio was beneficial to EPR effect of nanoparticles in mucus. This study provides significant implication in rational oral drug carrier design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, Y. D.; Li, H. B.; Wang, Q.; Hao, X. Y.; Li, H. M.; Sun, H. Q.; Han, L.; Zhang, Z. R.; Zou, Q. M.; Sun, X. Rationally designed self-assembling nanoparticles to overcome mucus and epithelium transport barriers for oral vaccines against Helicobacter pylori. Adv. Funct. Mater. 2018, 28, 1802675.

    Article  Google Scholar 

  2. Fan, W. W.; Xia, D. N.; Zhu, Q. L.; Li, X. X.; He, S. F.; Zhu, C. L.; Guo, S. Y.; Hovgaard, L.; Yang, M. S.; Gan, Y. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery. Biomaterials 2018, 151, 13–23.

    Article  CAS  Google Scholar 

  3. García-Díaz, M.; Birch, D.; Wan, F.; Nielsen, H. M. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv. Drug Deliv. Rev. 2018, 124, 107–124.

    Article  Google Scholar 

  4. Taherali, F.; Varum, F.; Basit, A. W. A slippery slope: On the origin, role and physiology of mucus. Adv. Drug Deliv. Rev. 2018, 124, 16–33.

    Article  CAS  Google Scholar 

  5. Murgia, X.; Loretz, B.; Hartwig, O.; Hittinger, M.; Lehr, C. M. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 2018, 124, 82–97.

    Article  CAS  Google Scholar 

  6. Wu, L.; Shan, W.; Zhang, Z. R.; Huang, Y. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev. 2018, 124, 150–163.

    Article  CAS  Google Scholar 

  7. Suk, J. S.; Xu, Q. G.; Kim, N.; Hanes, J.; Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51.

    Article  CAS  Google Scholar 

  8. Bajka, B. H.; Rigby, N. M.; Cross, K. L.; Macierzanka, A.; Mackie, A. R. The influence of small intestinal mucus structure on particle transport ex vivo. Colloids Surf. B Biointerfaces 2015, 135, 73–80.

    Article  CAS  Google Scholar 

  9. Li, D.; Zhuang, J.; He, H. S.; Jiang, S. F.; Banerjee, A.; Lu, Y.; Wu, W.; Mitragotri, S.; Gan, L.; Qi, J. P. Influence of particle geometry on gastrointestinal transit and absorption following oral administration. ACS Appl. Mater. Interfaces 2017, 9, 42492–42502.

    Article  CAS  Google Scholar 

  10. Bao, C.; Liu, B.; Li, B.; Chai, J. J.; Zhang, L. W.; Jiao, L. L.; Li, D.; Yu, Z. Q.; Ren, F. Z.; Shi, X. H. et al. Enhanced transport of shape and rigidity-tuned α-lactalbumin nanotubes across intestinal mucus and cellular barriers. Nano Lett. 2020, 20, 1352–1361.

    Article  CAS  Google Scholar 

  11. Banerjee, A.; Qi, J. P.; Gogoi, R.; Wong, J.; Mitragotri, S. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. J. Control. Release 2016, 238, 176–185.

    Article  CAS  Google Scholar 

  12. Yu, M. R.; Wang, J. L.; Yang, Y. W.; Zhu, C. L.; Su, Q.; Guo, S. Y.; Sun, J. S.; Gan, Y.; Shi, X. H.; Gao, H. J. Rotation-facilitated rapid transport of nanorods in mucosal tissues. Nano Lett. 2016, 16, 7176–7182.

    Article  CAS  Google Scholar 

  13. Sycuro, L. K.; Pincus, Z.; Gutierrez, K. D.; Biboy, J.; Stern, C. A.; Vollmer, W.; Salama, N. R. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 2010, 141, 822–833.

    Article  CAS  Google Scholar 

  14. Backhed, F.; Ley, R. E.; Sonnenburg, J. L.; Peterson, D. A.; Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 2005, 307, 1915–1920.

    Article  Google Scholar 

  15. Li, C.; Wang, J. C.; Wang, Y. G.; Gao, H. L.; Wei, G.; Huang, Y. Z.; Yu, H. J.; Gan, Y.; Wang, Y. J.; Mei, L. et al. Recent progress in drug delivery. Acta Pharm. Sin. B 2019, 9, 1145–1162.

    Article  Google Scholar 

  16. Zhou, Y. X.; Quan, G. L.; Wu, Q. L.; Zhang, X. X.; Niu, B. Y.; Wu, B. Y.; Huang, Y.; Pan, X.; Wu, C. B. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B 2018, 8, 165–177.

    Article  Google Scholar 

  17. Maleki, A.; Kettiger, H.; Schoubben, A.; Rosenholm, J. M.; Ambrogi, V.; Hamidi, M. Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs. J. Control. Release 2017, 262, 329–347.

    Article  CAS  Google Scholar 

  18. Yildirim, A.; Bayindir, M. A porosity difference based selective dissolution strategy to prepare shape-tailored hollow mesoporous silica nanoparticles. J. Mater. Chem. A 2015, 3, 3839–3846.

    Article  CAS  Google Scholar 

  19. Zhao, Y. T.; Wang, Y.; Ran, F.; Cui, Y.; Liu, C.; Zhao, Q. F.; Gao, Y. K.; Wang, D.; Wang, S. L. A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics. Sci. Rep. 2017, 7, 4131.

    Article  Google Scholar 

  20. Hubatsch, I.; Ragnarsson, E. G. E.; Artursson, P. Determination of drug permeability and prediction of drug absorption in Caco-2 monolayers. Nat. Protoc. 2007, 2, 2111–2119.

    Article  CAS  Google Scholar 

  21. Friedl, H.; Dünnhaupt, S.; Hintzen, F.; Waldner, C.; Parikh, S.; Pearson, J. P.; Wilcox, M. D.; Bernkop-Schnürch, A. Development and evaluation of a novel mucus diffusion test system approved by self-nanoemulsifying drug delivery systems. J. Pharm. Sci. 2013, 102, 4406–4413.

    Article  CAS  Google Scholar 

  22. Zhang, X. X.; Li, F. F.; Guo, S. Y.; Chen, X.; Wang, X. L.; Li, J.; Gan, Y. Biofunctionalized polymer-lipid supported mesoporous silica nanoparticles for release of chemotherapeutics in multidrug resistant cancer cells. Biomaterials 2014, 35, 3650–3665.

    Article  CAS  Google Scholar 

  23. Yu, T.; Malugin, A.; Ghandehari, H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano 2011, 5, 5717–5728.

    Article  CAS  Google Scholar 

  24. Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.

    Article  CAS  Google Scholar 

  25. You, Y. Y.; He, L. Z.; Ma, B.; Chen, T. F. High-drug-loading mesoporous silica nanorods with reduced toxicity for precise cancer therapy against nasopharyngeal carcinoma. Adv. Funct. Mater. 2017, 27, 1703313.

    Article  Google Scholar 

  26. Wan, Y.; Zhao, D. Y. On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107, 2821–2860.

    Article  CAS  Google Scholar 

  27. Cong, V. T.; Gaus, K.; Tilley, R. D.; Gooding, J. J. Rod-shaped mesoporous silica nanoparticles for nanomedicine: Recent progress and perspectives. Expert Opin. Drug Deliv. 2018, 15, 881–892.

    Article  CAS  Google Scholar 

  28. Pang, X. L.; Gao, J. N.; Tang, F. Q. Controlled preparation of rod-and top-like MCM-41 mesoporous silica through one-step route. J. Non-Cryst. Solids 2005, 351, 1705–1709.

    Article  CAS  Google Scholar 

  29. Yang, Y. W.; Tian, F. L.; Nie, D.; Liu, Y.; Qian, K.; Yu, M. R.; Wang, A. H.; Zhang, Y. Q.; Shi, X. H.; Gan, Y. Rapid transport of germ-mimetic nanoparticles with dual conformational polyethylene glycol chains in biological tissues. Sci. Adv. 2020, 6, eaay9937.

    Article  CAS  Google Scholar 

  30. Che, S. N.; Liu, Z.; Ohsuna, T.; Sakamoto, K.; Terasaki, O.; Tatsumi, T. Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429, 281–284.

    Article  CAS  Google Scholar 

  31. Qiu, P. P.; Ma, B.; Hung, C. T.; Li, W.; Zhao, D. Y. Spherical mesoporous materials from single to multilevel architectures. Acc. Chem. Res. 2019, 52, 2928–2938.

    Article  CAS  Google Scholar 

  32. Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Cheng, L. N.; Yan, Z. F.; Lu, G. Q. Hydrophobic functional group initiated helical mesostructured silica for controlled drug release. Adv. Funct. Mater. 2008, 18, 3834–3842.

    Article  CAS  Google Scholar 

  33. Bremmell, K. E.; Prestidge, C. A. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: Opportunities and challenges. Drug Dev. Ind. Pharm. 2019, 45, 349–358.

    Article  CAS  Google Scholar 

  34. Bhujbal, S. V.; Mitra, B.; Jain, U.; Gong, Y. C.; Agrawal, A.; Karki, S.; Taylor, L. S.; Kumar, S.; Zhou, Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B 2021, 11, 2505–2536.

    Article  CAS  Google Scholar 

  35. Sugano, K. Possible reduction of effective thickness of intestinal unstirred water layer by particle drifting effect. Int. J. Pharm. 2010, 387, 103–109.

    Article  CAS  Google Scholar 

  36. Wang, J. L.; Yang, Y. W.; Yu, M. R.; Hu, G. Q.; Gan, Y.; Gao, H. J.; Shi, X. H. Diffusion of rod-like nanoparticles in non-adhesive and adhesive porous polymeric gels. J. Mech. Phys. Solids 2018, 112, 431–457.

    Article  CAS  Google Scholar 

  37. Löbenberg, R.; Amidon, G. L. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 2000, 50, 3–12.

    Article  Google Scholar 

  38. Rosenberger, J.; Butler, J.; Dressman, J. A refined developability classification system. J. Pharm. Sci. 2018, 107, 2020–2032.

    Article  CAS  Google Scholar 

  39. Yang, Y. Q.; Lv, Y. J.; Shen, C. Y.; Shi, T. T.; He, H. S.; Qi, J. P.; Dong, X. C.; Zhao, W. L.; Lu, Y.; Wu, W. In vivo dissolution of poorly water-soluble drugs:Proof of concept based on fluorescence bioimaging. Acta Pharm. Sin. B 2021, 11, 1056–1068.

    Article  CAS  Google Scholar 

  40. Yu, T.; Greish, K.; McGill, L. D.; Ray, A.; Ghandehari, H. Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: Their vasculature effect and tolerance threshold. ACS Nano 2012, 6, 2289–2301.

    Article  CAS  Google Scholar 

  41. Mohammadpour, R.; Yazdimamaghani, M.; Cheney, D. L.; Jedrzkiewicz, J.; Ghandehari, H. Subchronic toxicity of silica nanoparticles as a function of size and porosity. J. Control. Release 2019, 304, 216–232.

    Article  CAS  Google Scholar 

  42. Mohammadpour, R.; Cheney, D. L.; Grunberger, J. W.; Yazdimamaghani, M.; Jedrzkiewicz, J.; Isaacson, K. J.; Dobrovolskaia, M. A.; Ghandehari, H. One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. J. Control. Release 2020, 324, 471–481.

    Article  CAS  Google Scholar 

  43. Fu, C. H.; Liu, T. L.; Li, L. L.; Liu, H. Y.; Chen, D.; Tang, F. Q. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials 2013, 34, 2565–2575.

    Article  CAS  Google Scholar 

  44. Roy, B.; Mondal, A.; Bera, S. K.; Banerjee, A. Using Brownian motion to measure shape asymmetry in mesoscopic matter using optical tweezers. Soft Matter 2016, 12, 5077–5080.

    Article  CAS  Google Scholar 

  45. Jurney, P.; Agarwal, R.; Singh, V.; Choi, D.; Roy, K.; Sreenivasan, S. V.; Shi, L. Unique size and shape-dependent uptake behaviors of non-spherical nanoparticles by endothelial cells due to a shearing flow. J. Control. Release 2017, 245, 170–176.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 81872826), the Science and Technology Commission of Shanghai Municipality (No. 18ZR1404100), and the Shanghai Pujiang Program (No. 18PJD001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Qi.

Electronic Supplementary Material

12274_2022_4601_MOESM1_ESM.pdf

Rod-like mesoporous silica nanoparticles facilitate oral drug delivery via enhanced permeation and retention effect in mucus

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, L., Dong, Z. et al. Rod-like mesoporous silica nanoparticles facilitate oral drug delivery via enhanced permeation and retention effect in mucus. Nano Res. 15, 9243–9252 (2022). https://doi.org/10.1007/s12274-022-4601-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4601-2

Keywords

Navigation