Skip to main content
Log in

Versatile nanocomposite augments high-intensity focused ultrasound for high-efficacy sonodynamic therapy of glioma

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High-intensity focused ultrasound (HIFU), with inherent advantages of improved ultrasonic depth and low off-target damage, holds the promising capability for glioma treatment, but the relatively long therapeutic time and potential physical complications may hamper its clinical application. Herein, a bovine serum albumin (BSA)-based nanoplatform with in situ growth of MnO2 was synthesized, and Protoporphyrin IX (PpIX) was further anchored to obtain a versatile PpIX@MnO2@BSA nanoplatform (denoted as BMP). By employing HIFU as the exogenous irradiation source, a high-efficacy sonodynamic therapy (SDT) is developed, in which the excited BMP enables the production of tumoricidal reactive oxygen species (ROS). The inherent tumor microenvironment (TME)-responsive property of MnO2 endows BMP with specific T1-weighted magnetic resonance imaging (MRI) by releasing Mn2+, and the simultaneously generated O2 facilitates hypoxia alleviation as well as 1O2 generation. Compared with HIFU therapy alone, suppression of glioma growth and improved survival benefits are achieved through the designed TME-responsive nanocomposite under HIFU exposure. The high-efficacy SDT strategy combining BMP and HIFU demonstrated favorable TME-responsive T1-weighted MRI, hypoxic environment alleviation, and anti-tumor capability, providing a perspective paradigm for MRI-guided glioma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nabors, L. B.; Portnow, J.; Ahluwalia, M.; Baehring, J.; Brem, H.; Brem, S.; Butowski, N.; Campian, J. L.; Clark, S. W.; Fabiano, A. J. et al. Central nervous system cancers, version 3.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2020, 18, 1537–1570.

    Article  Google Scholar 

  2. Pace, A.; Dirven, L.; Koekkoek, J. A. F.; Golla, H.; Fleming, J.; Rudà, R.; Marosi, C.; Le Rhun, E.; Grant, R.; Oliver, K. et al. European association for neuro-oncology (EANO) guidelines for palliative care in adults with glioma. Lancet Oncol. 2017, 18, e330–e340.

    Article  Google Scholar 

  3. Lapointe, S.; Perry, A.; Butowski, N. A. Primary brain tumours in adults. Lancet 2018, 392, 432–446.

    Article  Google Scholar 

  4. Armstrong, T. S.; Dirven, L.; Arons, D.; Bates, A.; Chang, S. M.; Coens, C.; Espinasse, C.; Gilbert, M. R.; Jenkinson, D.; Kluetz, P. et al. Glioma patient-reported outcome assessment in clinical care and research: A response assessment in neuro-oncology collaborative report. Lancet Oncol. 2020, 21, e97–e103.

    Article  Google Scholar 

  5. Alkins, R. D.; Mainprize, T. G. High-intensity focused ultrasound ablation therapy of gliomas. Prog. Neurol. Surg. 2018, 32, 39–47.

    Article  Google Scholar 

  6. Van Den Bijgaart, R. J. E.; Eikelenboom, D. C.; Hoogenboom, M.; Fütterer, J. J.; Den Brok, M. H.; Adema, G. J. Thermal and mechanical high-intensity focused ultrasound: Perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol. Immunother. 2017, 66, 247–258.

    Article  Google Scholar 

  7. Hsiao, Y. H.; Kuo, S. J.; Tsai, H. D.; Chou, M. C.; Yeh, G. P. Clinical application of high-intensity focused ultrasound in cancer therapy. J. Cancer 2016, 7, 225–231.

    Article  CAS  Google Scholar 

  8. Chen, Y.; Chen, H. R.; Shi, J. L. Nanobiotechnology promotes noninvasive high-intensity focused ultrasound cancer surgery. Adv. Healthcare Mater. 2015, 4, 158–165.

    Article  CAS  Google Scholar 

  9. Zhang, X. M.; Zheng, Y. Y.; Wang, Z. G.; Huang, S.; Chen, Y.; Jiang, W.; Zhang, H.; Ding, M. X.; Li, Q. S.; Xiao, X. Q. et al. Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 2014, 35, 5148–5161.

    Article  CAS  Google Scholar 

  10. Bilmin, K.; Kujawska, T.; Grieb, P. Sonodynamic therapy for gliomas. Perspectives and prospects of selective sonosensitization of glioma cells. Cells 2019, 8, 1428.

    Article  CAS  Google Scholar 

  11. Son, S. B.; Kim, J. H.; Wang, X. W.; Zhang, C. L.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J. S. et al. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261.

    Article  CAS  Google Scholar 

  12. Liang, S.; Deng, X. R.; Ma, P. A.; Cheng, Z. Y.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater. 2020, 32, 2003214.

    Article  CAS  Google Scholar 

  13. Lin, X. H.; Song, J. B.; Chen, X. Y.; Yang, H. H. Ultrasound-activated sensitizers and applications. Angew. Chem., Int. Ed. 2020, 59, 14212–14233.

    Article  CAS  Google Scholar 

  14. Xu, M. M.; Zhou, L. Q.; Zheng, L.; Zhou, Q.; Liu, K.; Mao, Y. H.; Song, S. S. Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett. 2021, 497, 229–242.

    Article  CAS  Google Scholar 

  15. Liu, Y. C.; Bai, L. M.; Guo, K. L.; Jia, Y. L.; Zhang, K.; Liu, Q. H.; Wang, P.; Wang, X. B. Focused ultrasound-augmented targeting delivery of nanosonosensitizers from homogenous exosomes for enhanced sonodynamic cancer therapy. Theranostics 2019, 9, 5261–5281.

    Article  CAS  Google Scholar 

  16. Fite, B. Z.; Wang, J.; Ghanouni, P.; Ferrara, K. W. A review of imaging methods to assess ultrasound-mediated ablation. BME Front. 2022, 2022, 9758652.

    Article  Google Scholar 

  17. Kuroda, K. MR techniques for guiding high-intensity focused ultrasound (HIFU) treatments. J. Magn. Reson. Imaging 2018, 47, 316–331.

    Article  Google Scholar 

  18. Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

    Article  CAS  Google Scholar 

  19. Kunjachan, S.; Ehling, J.; Storm, G.; Kiessling, F.; Lammers, T. Noninvasive imaging of nanomedicines and nanotheranostics: Principles, progress, and prospects. Chem. Rev. 2015, 115, 10907–10937.

    Article  CAS  Google Scholar 

  20. Ding, B. B.; Zheng, P.; Ma, P. A.; Lin, J. Manganese oxide nanomaterials: Synthesis, properties, and theranostic applications. Adv. Mater. 2020, 32, 1905823.

    Article  CAS  Google Scholar 

  21. Cai, X. X.; Zhu, Q. X.; Zeng, Y.; Zeng, Q.; Chen, X. L.; Zhan, Y. H. Manganese oxide nanoparticles as mri contrast agents in tumor multimodal imaging and therapy. Int. J. Nanomedicine 2019, 14, 8321–8344.

    Article  CAS  Google Scholar 

  22. Chen, Z. W.; Jiao, Z.; Pan, D. Y.; Li, Z.; Wu, M. H.; Shek, C. H.; Wu, C. M. L.; Lai, J. K. L. Recent advances in manganese oxide nanocrystals: Fabrication, characterization, and microstructure. Chem. Rev. 2012, 112, 3833–3855.

    Article  CAS  Google Scholar 

  23. Li, Y.; Zhao, X.; Liu, X. L.; Cheng, K. M.; Han, X. X.; Zhang, Y. L.; Min, H.; Liu, G. N.; Xu, J. C.; Shi, J. et al. A bioinspired nanoprobe with multilevel responsive T1-weighted MR signal-amplification illuminates ultrasmall metastases. Adv. Mater. 2020, 32, 1906799.

    Article  CAS  Google Scholar 

  24. Ji, T. J.; Zhao, Y.; Ding, Y. P.; Nie, G. J. Using functional nanomaterials to target and regulate the tumor microenvironment: Diagnostic and therapeutic applications. Adv. Mater. 2013, 25, 3508–3525.

    Article  CAS  Google Scholar 

  25. Wu, T.; Dai, Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017, 387, 61–68.

    Article  CAS  Google Scholar 

  26. Fu, C. P.; Duan, X. H.; Cao, M. H.; Jiang, S. Q.; Ban, X. H.; Guo, N.; Zhang, F.; Mao, J. J.; Huyan, T.; Shen, J. et al. Targeted magnetic resonance imaging and modulation of hypoxia with multifunctional hyaluronic acid-MnO2 nanoparticles in glioma. Adv. Healthcare Mater. 2019, 8, 1900047.

    Article  Google Scholar 

  27. Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 2018, 12, 3780–3795.

    Article  CAS  Google Scholar 

  28. Xu, Q. B.; Zhan, G. T.; Zhang, Z. L.; Yong, T. Y.; Yang, X. L.; Gan, L. Manganese porphyrin-based metal-organic framework for synergistic sonodynamic therapy and ferroptosis in hypoxic tumors. Theranostics 2021, 11, 1937–1952.

    Article  CAS  Google Scholar 

  29. Cui, X. W.; Han, X. X.; Yu, L. D.; Zhang, B.; Chen, Y. Intrinsic chemistry and design principle of ultrasound-responsive nanomedicine. Nano Today 2019, 28, 100773.

    Article  Google Scholar 

  30. Li, Z.; Tan, S. R.; Li, S.; Shen, Q.; Wang, K. H. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol. Rep. 2017, 38, 611–624.

    Article  CAS  Google Scholar 

  31. Amreddy, N.; Babu, A.; Muralidharan, R.; Panneerselvam, J.; Srivastava, A.; Ahmed, R.; Mehta, M.; Munshi, A.; Ramesh, R. Recent advances in nanoparticle-based cancer drug and gene delivery. Adv. Cancer Res. 2018, 137, 115–170.

    Article  CAS  Google Scholar 

  32. Patel, S.; Ashwanikumar, N.; Robinson, E.; DuRoss, A.; Sun, C.; Murphy-Benenato, K. E.; Mihai, C.; Almarsson, Ö.; Sahay, G. Boosting intracellular delivery of lipid nanoparticle-encapsulated mRNA. Nano Lett. 2017, 17, 5711–5718.

    Article  CAS  Google Scholar 

  33. Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release 2008, 132, 171–183.

    Article  CAS  Google Scholar 

  34. Chen, J. W.; Chen, Q.; Liang, C.; Yang, Z. J.; Zhang, L.; Yi, X.; Dong, Z. L.; Chao, Y.; Chen, Y. G.; Liu, Z. Albumin-templated biomineralizing growth of composite nanoparticles as smart nanotheranostics for enhanced radiotherapy of tumors. Nanoscale 2017, 9, 14826–14835.

    Article  CAS  Google Scholar 

  35. Chen, Q.; Liu, Z. Albumin carriers for cancer theranostics: A conventional platform with new promise. Adv. Mater. 2016, 28, 10557–10566.

    Article  CAS  Google Scholar 

  36. Chen, B.; He, X. Y.; Yi, X. Q.; Zhuo, R. X.; Cheng, S. X. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 15148–15153.

    Article  CAS  Google Scholar 

  37. Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

    Article  CAS  Google Scholar 

  38. Elzoghby, A. O.; Samy, W. M.; Elgindy, N. A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release 2012, 157, 168–182.

    Article  CAS  Google Scholar 

  39. Lin, T. T.; Zhao, P. F.; Jiang, Y. F.; Tang, Y. S.; Jin, H. Y.; Pan, Z. Z.; He, H. N.; Yang, V. C.; Huang, Y. Z. Blood-brain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano 2016, 10, 9999–10012.

    Article  CAS  Google Scholar 

  40. Yang, W. T.; Guo, W. S.; Le, W. J.; Lv, G. X.; Zhang, F. H.; Shi, L.; Wang, X. L.; Wang, J.; Wang, S.; Chang, J. et al. Albumin-bioinspired Gd: CuS nanotheranostic agent for in vivo photoacoustic/magnetic resonance imaging-guided tumor-targeted photothermal therapy. ACS Nano 2016, 10, 10245–10257.

    Article  CAS  Google Scholar 

  41. Chen, Q.; Liang, C.; Wang, C.; Liu, Z. An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater. 2015, 27, 903–910.

    Article  CAS  Google Scholar 

  42. Liu, X. Q.; Mohanty, R. P.; Maier, E. Y.; Peng, X. J.; Wulfe, S.; Looney, A. P.; Aung, K. L.; Ghosh, D. Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. J. Control. Release 2020, 328, 1–12.

    Article  CAS  Google Scholar 

  43. An, F. F.; Zhang, X. H. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery. Theranostics 2017, 7, 3667–3689.

    Article  CAS  Google Scholar 

  44. Lin, L. S.; Song, J. B.; Song, L.; Ke, K. M.; Liu, Y. J.; Zhou, Z. J.; Shen, Z. Y.; Li, J.; Yang, Z.; Tang, W. et al. Simultaneous fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem., Int. Ed. 2018, 57, 4902–4906.

    Article  CAS  Google Scholar 

  45. Zhang, Y. N.; Poon, W.; Tavares, A. J.; McGilvray, I. D.; Chan, W. C. W. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J. Control. Release 2016, 240, 332–348.

    Article  CAS  Google Scholar 

  46. Rankin, E. B.; Giaccia, A. J. Hypoxic control of metastasis. Science 2016, 352, 175–180.

    Article  CAS  Google Scholar 

  47. Kumar, V.; Gabrilovich, D. I. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 2014, 143, 512–519.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dalong Ni, at Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, for manuscript editing. We are also grateful to Minxia Wu, at Fujian Medical University, Fuzhou, China, for her assistance in nanoparticle characterization. This work was financially supported by the Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX01) and ZJ Lab, Shanghai Center for Brain-Inspired Technology, and the Youth Program of National Natural Science Foundation of China (No. 81901697).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Liu, Zhiqing Pang or Bo Yin.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., She, D., Huang, H. et al. Versatile nanocomposite augments high-intensity focused ultrasound for high-efficacy sonodynamic therapy of glioma. Nano Res. 15, 9082–9091 (2022). https://doi.org/10.1007/s12274-022-4542-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4542-9

Keywords

Navigation