Skip to main content
Log in

Porphyrin-based Nanosonosensitizers Combined with Targeting Peptides for Sonodynamic Therapy of Glioma

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Traditional cancer treatments have disadvantages of large trauma area and toxic side effects while killing cancer cells. Peptide-targeted sonodynamic therapy (SDT) can effectively improve specificity of cancer treatment and overcome the problem of low tissue penetration depth caused by a photo-driven therapy. Herein, we developed a porphyrin-based sonosensitizer with a water-soluble polymer as a biological carrier and a cRGD peptide for tumor targeting, which constituted a nano sonosensitizer (T-cRGD NPs) for fluorescence imaging-guided sonodynamic therapy. A comparable sonosensitizer (T-PEG NPs) without the targeting unit was also prepared for illustration of therapeutic performance. Attribute to the role of peptide targeting, T-cRGD NPs can accumulate and enter tumor cells for fluorescence imaging and show a superior SDT effect than T-PEG NPs in vitro. The imaging in vivo reveals that T-cRGD NPs can enrich in tumor tissues within 14 h with a good biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Behin, A.; Hoang-Xuan, K.; Carpentier, A. F.; Delattre, J. Y. Primary brain tumours in adults. The Lancet 2003, 361, 323–331.

    Article  Google Scholar 

  2. Sharma, G. N.; Dave, R.; Sanadya, J.; Sharma, P.; Sharma, K. K. Various types and management of breast cancer: an overview. J. Adv. Pharm. Technol. Res. 2010, 1, 109–126.

    PubMed  PubMed Central  Google Scholar 

  3. Didkowska, J.; Wojciechowska, U.; Mańczuk, M.; Łobaszewski, J. Lung cancer epidemiology: contemporary and future challenges worldwide. Ann. Transl. Med. 2016, 4, 150–150.

    Article  Google Scholar 

  4. Schirrmacher, V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 2019, 54, 407–419.

    CAS  PubMed  Google Scholar 

  5. Zheng, X.; Bian, S.; Liu, W.; Zhang, C.; Wu, J.; Ren, H.; Zhang, W.; Lee, C. S.; Wang, P. Amphiphilic diketopyrrolopyrrole derivatives for efficient near-infrared fluorescence imaging and photothermal therapy. ACS Omega 2021, 6, 26575–26582.

    Article  CAS  Google Scholar 

  6. Moan, J.; Peng, Q. An outline of the history of PDT. Anticancer Res. 2003, 23, 3591–3600.

    PubMed  Google Scholar 

  7. Park, W.; Cho, S.; Han, J.; Shin, H.; Na, K.; Lee, B.; Kim, D.-H. Advanced smart-photosensitizers for more effective cancer treatment. Biomater. Sci. 2018, 6, 79–90.

    Article  CAS  Google Scholar 

  8. Jin, J.; Zhu, Y.; Zhang, Z.; Zhang, W. Enhancing the efficacy of photodynamic therapy through a porphyrin/POSS alternating copolymer. Angew. Chem. Int. Ed. 2018, 57, 16354–16358.

    Article  CAS  Google Scholar 

  9. Zheng, X.; Liu, W.; Ge, J.; Jia, Q.; Nan, F.; Ding, Y.; Wu, J.; Zhang, W.; Lee, C. S.; Wang, P. Biodegradable natural product-based nanoparticles for near-infrared fluorescence imaging-guided sonodynamic therapy. ACS Appl. Mater. Interfaces 2019, 11, 18178–18185.

    Article  CAS  Google Scholar 

  10. Kim, H. M.; Cho, B. R. Small-molecule two-photon probes for bioimaging applications. Chem. Rev. 2015, 115, 5014–5055.

    Article  CAS  Google Scholar 

  11. Jin, G.; He, R.; Liu, Q.; Lin, M.; Dong, Y.; Li, K.; Tang, B. Z.; Liu, B.; Xu, F. Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles. Theranostics 2019, 9, 246–264.

    Article  CAS  Google Scholar 

  12. Umemura, S. I.; Yumita, N.; Nishigaki, R.; Umemura, K. Sonochemical activation of hematoporphyrin: a potential modality for cancer treatment. Ultrason. Sympos. Proceed. 1989, 2, 955–960.

    Article  Google Scholar 

  13. Yumita, N.; Nishigaki, R.; Umemura, K.; Umemura, S. I. Synergistic Effect of Ultrasound and Hematoporphyrin on Sarcoma. Jap. J. Cancer Res. 1990, 81, 304–308.

    Article  CAS  Google Scholar 

  14. Son, S.; Kim, J. H.; Wang, X.; Zhang, C.; Yoon, S. A.; Shin, J.; Sharma, A.; Lee, M. H.; Cheng, L.; Wu, J.; Kim, J. S. Multifunctional sonosensitizers in sonodynamic cancer therapy. Chem. Soc. Rev. 2020, 49, 3244–3261.

    Article  CAS  Google Scholar 

  15. Canavese, G.; Ancona, A.; Racca, L.; Canta, M.; Dumontel, B.; Barbaresco, F.; Limongi, T.; Cauda, V. Nanoparticle-assisted ultrasound: a special focus on sonodynamic therapy against cancer. Chem. Eng. J. 2018, 340, 155–172.

    Article  CAS  Google Scholar 

  16. Hoogenboom, M.; Eikelenboom, D.; den Brok, M. H.; Heerschap, A.; Fütterer, J. J.; Adema, G. J. Mechanical high-intensity focused ultrasound destruction of soft tissue: working mechanisms and physiologic effects. Ultrasound Med. Biol. 2015, 41, 1500–1517.

    Article  Google Scholar 

  17. Choi, V.; Rajora, M.; Zheng, G. Activating drugs with sound: mechanisms behind sonodynamic therapy and the role of nanomedicine. Bioconjug. Chem. 2020, 31, 967–989.

    Article  CAS  Google Scholar 

  18. Lin, X.; Song, J.; Chen, X.; Yang, H. Ultrasound-activated sensitizers and applications. Angew. Chem. Int. Ed. 2020, 59, 14212–14233.

    Article  CAS  Google Scholar 

  19. Yumita, N.; Sakata, I.; Nakajima, S.; Umemura, S. I. Ultrasonically induced cell damage and active oxygen generation by 4-formyloximeetylidene-3-hydroxyl-2-vinyl-deuterio-porphynyl(IX)-6–7-diaspartic acid: on the mechanism of sonodynamic activation. Biochim. Biophys. Acta 2003, 1620, 179–184.

    Article  CAS  Google Scholar 

  20. Yumita, N.; Kawabata, K. I.; Sasaki, K.; Umemura, S. I. Sonodynamic effect of erythrosin B on sarcoma 180 cells in vitro. Ultrason. Sonochem. 2002, 9, 259–265.

    Article  CAS  Google Scholar 

  21. An, R.; Cheng, X.; Wei, S.; Hu, Y.; Sun, Y.; Huang, Z.; Chen, H. Y.; Ye, D. Smart magnetic and fluorogenic photosensitizer nanoassemblies enable redox-driven disassembly for photodynamic therapy. Angew. Chem. Int. Ed. 2020, 59, 20636–20644.

    Article  CAS  Google Scholar 

  22. Zhang, C.; Wu, J.; Liu, W.; Zheng, X.; Zhang, W.; Lee, C. S.; Wang, P. Hypocrellin-based multifunctional phototheranostic agent for NIR-triggered targeted chemo/photodynamic/photothermal synergistic therapy against glioblastoma. ACS Appl. Bio Mater. 2020, 3, 3817–3826.

    Article  CAS  Google Scholar 

  23. Huveneers, S.; Truong, H.; Danen, E. H. J. Integrins: signaling, disease, and therapy. Int. J. Radiat. Biol. 2007, 83, 743–751.

    Article  CAS  Google Scholar 

  24. Cai, W.; Chen, X. Anti-angiogenic cancer therapy based on integrin αvβ3 antagonism. Anticancer Agents Med. Chem. 2006, 6, 407–428.

    Article  CAS  Google Scholar 

  25. Wallbrunn, A.; Höltke, C.; Zühlsdorf, M.; Heindel, W.; Schäfers, M.; Bremer, C. In vivo imaging of integrin αvβ3 expression using fluorescence-mediated tomography. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 745–754.

    Article  Google Scholar 

  26. Humphries, J. D.; Byron, A.; Humphries, M. J. Integrin ligands at a glance. J. Cell. Sci. 2006, 119, 3901–3903.

    Article  CAS  Google Scholar 

  27. Haubner, R.; Bruchertseifer, F.; Bock, M.; Kessler, H.; Schwaiger, M.; Wester, H.-J. Synthesis and biological evaluation of a Tc-labelled cyclic RGD peptide for imaging the αvβ3 expression. Nuklearmed-Nucl med 2004, 43, 26–32.

    Article  CAS  Google Scholar 

  28. Jiang, M.; Wu, J.; Liu, W.; Ren, H.; Zhang, W.; Lee, C. S.; Wang, P. Self-assembly of amphiphilic porphyrins to construct nanoparticles for highly efficient photodynamic therapy. Chem. Eur. J. 2021, 27, 11195–11204.

    Article  CAS  Google Scholar 

  29. Ragàs, X.; Jiménez-Banzo, A.; Sánchez-García, D.; Batllori, X.; Nonell, S. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green®. Chem. Commun. 2009, 2920–2922.

  30. Merlin, J.; Azzi, S.; Lignon, D.; Ramacci, C.; Zeghari, N.; Guillemin, F. MTT assays allow quick and reliable measurement of the response of human tumor cells to photodynamic therapy. Eur. J. Cancer 1992, 28, 1452–1458.

    Article  Google Scholar 

  31. Cai, X.; Bandla, A.; Chuan, C. K.; Magarajah, G.; Liao, L. D.; Teh, D. B. L.; Kennedy, B. K.; Thakor, N. V.; Liu, B. Identifying glioblastoma margins using dual-targeted organic nanoparticles for efficient in vivo fluorescence image-guided photothermal therapy. Mater. Horiz. 2019, 6, 311–317.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21873110 and 61720106014) and the Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20170015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-Sheng Wu or Peng-Fei Wang.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, MY., Wu, JS., Liu, WM. et al. Porphyrin-based Nanosonosensitizers Combined with Targeting Peptides for Sonodynamic Therapy of Glioma. Chin J Polym Sci 40, 1120–1128 (2022). https://doi.org/10.1007/s10118-022-2795-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2795-0

Keywords

Navigation